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Increasingly, phonetic research uses data collected from participants who record themselves on 
readily available devices. Though such recordings are convenient, their suitability for acoustic 
analysis remains an open question, especially regarding how recording methods affect acoustic 
measures over time. We used Quantile Generalized Additive Mixed Models (QGAMMs) to analyze 
measures of F0, intensity, and the first and second formants, comparing files recorded using 
a laboratory-standard recording method (Zoom H6 recorder with an external microphone), to 
three remote recording methods: (1) the Awesome Voice Recorder application on a smartphone 
(AVR), (2) the Zoom meeting application with default settings (Zoom-default), and (3) the Zoom 
meeting application with the “Turn on Original Sound” setting (Zoom-raw). A linear temporal 
alignment issue was observed for the Zoom methods over the course of the long, recording 
session files; however, the difference was not significant for utterance-length files. F0 was 
reliably measured using all methods. Intensity and formants presented non-linear differences 
across methods that could not be corrected for simply. Overall, the AVR files were most similar 
to the H6’s, and so AVR is deemed to be a more reliable recording method than either Zoom-
default or Zoom-raw.
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1. Introduction
The feasibility of analyzing speech data collected by alternative recording methods, outside 
of the laboratory, with accessible equipment, has been of interest to researchers for some 
time. This line of research has been driven by a range of needs, including access to particular 
participant groups (De Decker & Nycz, 2011; Vogel et al., 2015), frequent data collection 
for clinical voice assessment (Grillo et al., 2016), use of existing speech data for research 
purposes (Bulgin et al., 2010; Fuchs & Maxwell, 2016; Rathcke et al., 2017), and the possibility 
of running small studies without using limited laboratory resources, e.g., undergraduate 
dissertation projects. The broader need for better understanding of the effects of alternative 
recording methods was highlighted as a consequence of COVID-19-related measures. Due 
to travel limitations and restrictions on in-person meetings, laboratory production studies 
required a major change in format. While people are adapting to a more hybrid norm, the 
pandemic continues to influence the way we live and work, and financial, logistical, ethical, 
and political issues will remain a barrier to conducting laboratory or in-person data collection. 
Therefore, there is a need for further investigation into the comparability of laboratory-style 
data to data collected by alternative methods, particularly those that put the recording device 
into the hands of participants.

One of the commonalities in previous research is that it relies on mostly static measures, such 
as mean F0 (e.g., Uloza et al., 2015; Zhang et al., 2020, 2021), and steady state measurements of 
formants (e.g., Sanker et al., 2021; Zhang et al., 2021). The existing research, reviewed in more 
detail below (Section 1.1), cannot address the needs of many researchers, such as researchers in 
prosody, who are interested mostly in dynamic measures of F0 and intensity, for example. The 
need for dynamic measures is generally being recognized within phonetics research—Sóskuthy 
(2021) defined “dynamic speech analysis” as “the analysis of phonetic contours”, which can be 
either temporally or spatially ordered measurements. A second shared feature of previous studies 
is that they mostly examined speech materials that were short, such as read words (Freeman & 
De Decker, 2021b), sustained vowels of 2–5 seconds in duration (e.g., Ge et al., 2021; Zhang et 
al., 2021), and synthesized sounds (e.g., Manfredi et al., 2017). Isolated words and connected 
speech differ in part due to various connected speech phenomena (e.g., Harmegnies & Poch-
Olivé, 1992), such as vowel reduction, and can therefore result in a shift in how discovered 
differences are interpreted. A small number of studies looked at longer materials (e.g., Fahed 
et al., 2022; Jannetts et al., 2019; Maryn et al., 2017; Penney et al., 2021; Vogel et al., 2015); 
however, they did not examine dynamic measures, and indeed, only examined single tokens 
extracted from these longer recordings. Considering both points, by examining dynamic measures 
of connected speech, we should be able to reveal differences between recording methods which 
may be otherwise hidden behind the mean values.
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1.1. Background
Previous studies have investigated the effect of different hardware, file formats, and software on 
a range of speech measures using different types of speech materials.1 Appendix 1 summarizes 
studies of alternative recording methods in a format comparable to Jannetts et al. (2019), with 
details of the speech data analyzed, hardware, file formats, and software evaluated. As shown 
in Appendix 1, a diverse range of parameters have been examined in the literature, including 
signal-to-noise ratio (Kojima et al., 2018; Maryn et al., 2017) and voice quality measures such 
as jitter, shimmer, cepstral peak prominence (CPP) and harmonic-to-noise ratio (HNR) (Fahed 
et al., 2022; Grillo et al., 2016; Kojima et al., 2018; Maryn et al., 2017; Uloza et al., 2015; 
Vogel et al., 2015). Importantly, recent studies, which use the most contemporary devices 
and software options, conclude with advising caution when measuring many of these voice 
quality and amplitude-based measures (e.g., HNR, shimmer) (Fahed et al., 2022; Penney et al., 
2021). However, along with device- or software-based issues, there may be a number of factors 
contributing to the unreliability of remote methods, for example, the inability to control for 
environmental noise, the position of the device, or the microphone quality (Fahed et al., 2022), 
which are inevitable in the context of at-home recordings even with mitigating actions.

In the remainder of this section we focus on reported findings for the measures of interest 
in this paper, namely F0, formants, and intensity, as well as temporal differences caused by 
different recording methods.

Many previous studies looked at measures of F0. Together they showed that F0 is a 
robust measure that is accurately captured by a range of devices and file formats (see table in 
Appendix 1). When F0 differences are reported between baseline and comparison methods, they 
are often very small. For instance, Fahed et al. (2022) report a difference of 0.66 Hz between 
baseline method and smartphone condition, and –0.53 Hz between baseline and tablet condition 
for participants with Huntington’s disease; though we note there was no significant difference 
between the baseline and test methods for a neurotypical control group. In most studies, the 
mean values of F0 of sustained vowels is measured and compared (Fahed et al., 2022; Uloza et 
al., 2015; Vogel et al., 2015; Zhang et al., 2021); some researchers have examined F0 in read 
stories (Fahed et al., 2022; Jannetts et al., 2019; Maryn et al., 2017; Penney et al., 2021; Vogel et 
al., 2015). In all instances, however, what was measured was single F0 values of vowels, such as 
mean, median, and standard deviation. One problem with these measurements is that they do not 

 1 In this section we refer to software options for making audio recordings. These include conferencing software – 
Zoom (https://zoom.us/), Skype (https://www.skype.com/en/), Microsoft Teams (https://www.microsoft.com/
en-us/microsoft-teams/group-chat-software); smartphone messaging software – Messenger (https://www.messen-
ger.com/); software for audio interviews – Cleanfeed (https://cleanfeed.net/); and software for audio recording and 
analysis – Praat (Boersma & Weenink, 2020).

https://zoom.us/
https://www.skype.com/en/
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.messenger.com/
https://www.messenger.com/
https://cleanfeed.net/
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capture subtle F0 modulations that are important in many studies, such as studies of intonation 
or word-level prosody, and it is not possible to extrapolate from steady-state F0 to the F0 of 
utterances. The current study extends what we know about the reliability of F0, considering F0 
contours at the utterance level.2

While not under investigation in the current study, we note that F0 is found to be affected 
by extreme file compression. Fuchs and Maxwell (2016) examined the effect of compression 
rates between 16 and 320 kbps on a range of F0 measures across vowel, obstruent and sonorant 
segments from words in read speech. They concluded that mp3 data are viable for F0 analysis 
when compressed at bit rates between 56 kbps and 320 kbps, but not for more extreme 
compression rates such as 16 kbps and 32 kbps.

Unlike F0, formants have presented a more complicated case, as they have been found to not 
only be affected by recording method and file type, but also to interact with speaker gender, and 
further, individual vowels are affected differently. For example, Zhang et al. (2021) examined 
mean F1, F2, and F3 of sustained vowels, and concluded that smartphone recordings captured 
the formants more accurately than the online conferencing software Zoom (henceforth Zoom): 
the smartphone recordings did not present a significant difference from the baseline, recorded 
with a Zoom H6 digital recorder (henceforth H6). The Zoom conferencing software performed 
poorly in capturing all three formants. They also observed more errors in the Zoom recordings 
from female speakers than from male speakers. De Decker and Nycz (2011) also observed a 
gender difference. In their study, they examined vowels in h_d contexts spoken by one female 
and one male speaker and compared an iPhone (recording m4a), Macbook Pro (recording wav 
in Praat), a Mino Flip video camera (avi converted to aiff), and YouTube audio (downloaded as 
mpa) with recordings made using a Roland Edirol recorder. They reported that the lossy avi files 
from the camera had higher F1 values for both speakers than the baseline Edirol wav recordings. 
However, the effect was stronger for low back vowels of the male speaker and the high vowels 
of the female speaker. For F2, on the other hand, the male speaker’s vowels were not affected by 
recording type, but the female’s front vowel measurements were higher, and those of the back 
vowels lower, resulting in a distortion of the vowel space (De Decker & Nycz, 2011). Further, the 
compression used in the transmission of speech data via Skype has been found to significantly 
alter formants such that vowel spaces may be expanded in both F1 and F2 dimensions, or the 
vowel space is distorted with expansion in one part and compression in another (Bulgin et al., 
2010). A more recent study reported that Skype, Zoom, and Microsoft Teams (henceforth Teams) 
faithfully maintained patterns of overall vowel spaces for both a female and a male speaker but 
showed deviation of absolute formant values in the range of 750–1500 Hz, resulting in specific 
issues for mid-back vowels (Freeman & De Decker, 2021b). Freeman and De Decker (2021b), 

 2 See Supplementary Material 3 for an analysis of F0 over vowels. 
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who examined vowels in read word lists, reported that Teams was most accurate for the female 
speaker while for the male speaker the low, back part of the vowel space was compressed. Skype, 
on the other hand, was most accurate for the male speaker but least accurate for the female, 
expanding the vowel space except in the area of the high front vowels. The effects of gender 
are not yet clear because some of these studies include only one speaker of each gender, and so 
observed differences may be due to individual participants. In the current study, we investigated 
F1 and F2 of vowels, and examined the effects on the vowel space using three representative 
corner vowels, also considering speaker gender.

Intensity of the speech signal overall is not frequently investigated (cf. Sanker et al., 2021). 
One reason for this is that the distance from the microphone can result in differences in absolute 
intensity (Sanker et al., 2021), making comparisons of single time point or mean measures 
uninformative. Sanker et al. (2021) found differences in intensity in the test recording conditions 
compared with their baseline Zoom H4N recorder, as expected. Sanker et al. (2021) and Penney 
et al. (2021) also investigated a range of voice quality measures including spectral tilt (e.g., 
H1-H2), which rely on accurately measuring the amplitude of frequencies within the speech 
signal. Spectral tilt was found to be affected by the software in Sanker et al. (2021), with lower 
values for all software options except for Messenger, which was higher and to a greater degree 
than any other tested software method. Regarding device, only their Android method resulted 
in significantly different spectral tilt values from their baseline method, once again with a lower 
value. Penney et al. (2021) found that H1 was significantly higher across their test devices 
compared with their reference level H6 recorder. Microphone sensitivity to various frequencies 
in addition to any processing by software programs, such as those suggested by Sanker et al.’s 
(2021) results, could affect the relative intensity at different frequencies, and this could affect 
intensity over an utterance because of the different distribution of frequencies throughout a 
word or utterance. Zhang et al. (2021) observed unexpected periods of extremely reduced 
intensity for Zoom recordings with default settings. Overall, these results suggested a need for 
the investigation of the intensity measure, and so we included the examination of intensity 
contours in our current study.

It is not yet known how speech recordings are affected over time by alternative recording 
methods. Sanker et al. (2021) reported issues with alignment of long files in recordings made 
with the Zoom conferencing software, Cleanfeed, and Messenger. Ge et al. (2021) likewise 
reported that cloud-based Zoom recordings were significantly different from the Zoom H2N 
baseline with respect to the duration of some speech sounds. Fricatives, for example, were 
19.83 ms shorter in Zoom recordings than in baseline recordings, while vowels were shorter 
by 7.51 ms on average; the other segment types were comparable (~1 ms). Ge et al.’s (2021) 
findings may reflect a difference in the Zoom software, but it may also reflect a difference in 
the visual cues used in manual segmentation, which have been found in inter-rater reliability 
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studies to be in the region of 10–20 ms (see Machač & Skarnitzl, 2009, pp. 13–14 among others). 
We therefore consider duration differences with respect to the segmentation process, and the 
temporal alignment of landmarks across recordings.

1.2. Current study
In this study, we present results from a comparison of simultaneous recordings made using four 
recording methods: a baseline recording method which is representative of laboratory settings 
and three recording methods that could be broadly accessible to people at home. The baseline 
method is a high-quality digital recorder (Zoom H6), and the three remote methods are: (1) 
a smartphone with a non-lossy wav format recording application, Awesome Voice Recorder 
(Newkline, 2020) (henceforth AVR); (2) a computer running the conferencing software Zoom 
with default post-processing (e.g., noise canceling) enabled (henceforth Zoom-default); and (3) 
a computer running Zoom without post-processing (henceforth Zoom-raw; see section 2.3 for a 
full description).

The two comparison applications (AVR and Zoom) can be used on a wide range of hardware 
options to allow flexibility for participants. The focus of this paper is to evaluate and compare 
these specific applications, not smartphone or laptop makes or models. AVR was selected 
because it records non-lossy wav mono-channel files with high sampling rate, is available on 
iOS and Android, and saves recorded data locally. Zoom was selected because it is one of the 
most commonly used online conferencing apps and provides two recording options: one offers a 
noise canceling function that reduces background noise to produce clearer audio without the use 
of professional headphones and microphones; the other provides a possibility to retain the raw 
features of the original recording without post-processing. These “at home” recording methods 
were selected to represent some of the ways that participants in speech production studies could 
record at home without additional equipment, though we acknowledge that there are many 
other methods using combinations of software, devices, and additional equipment that could be 
tested. Importantly, all the methods in the current study can be operated without a cloud server 
to store the data, which allows the data collection to follow the data security guidelines of many 
funding organizations.

This study is motivated by the need to understand the effects over the course of larger units, 
such as utterances, as these are highly relevant for prosodic analysis. With the dynamic approach 
taken in this paper, we can examine differences in F0, intensity, and formants over time in 
curve height and curve shape, allowing for comparisons that go beyond mean or single time 
point differences. We have also been prompted by a general concern that convenient recording 
options employ unknown methods to modify audio, primarily to remove unwanted noise. It is 
not clear how this affects audio recordings over time, with the methods potentially affecting 
some parts of the audio while not others. Therefore, we compared baseline recordings (H6) 
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with three test conditions (AVR, Zoom-default, and Zoom-raw) to make direct recommendations 
based on these specific computer and smartphone applications. Regarding analysis, this study 
examines F0 over utterances, intensity over utterances, as well as vowel F1 and F2 to assess 
overall effects of recording method on these commonly used measures. Two temporal analyses 
were also performed: a comparison of utterance duration, and a comparison of landmark time 
points across entire recording session files. While we cannot say for certain why some of these 
results occur, we put forward some speculations.

2. Materials and methods
2.1. Participants
Eight speakers, four female (PF1-PF4) and four male (PM1-PM4), aged 28 to 32 years (mean = 
30.4, SD = 1.4) took part in the study. Speakers PM2 and PF3 were monolingual speakers of 
Australian English, PF4 was a multilingual speaker with American English as her first language, 
PF1 and PF2 were multilingual with Mandarin as their first language, and PM1, PM3, and PM4 
were multilingual with Dutch as their first language. The variable linguistic backgrounds of 
the participants are not a problem for the present study, which focuses on differences between 
recording methods. Participants were recruited from Radboud University, and were aware of the 
purpose of the study. Five of the participants had linguistic training.

We acknowledge the number of participants recruited for this study is small. Due to COVID-
19 restrictions, the authors’ institutions were not accessible for recordings or larger-scale 
recruitment at the time of data collection in January 2021, and in-person data collection was not 
possible due to limitations on gatherings in private settings. However, the number of participants 
is comparable to similar studies of the same nature (c.f. studies in Appendix 1).

2.2. Materials
The test materials were five sonorant-rich, scripted utterances that varied in their intonational 
tunes. They were designed to include rises, falls, and level stretches of pitch. Demonstration 
audio files were recorded for these utterances using varied liveliness levels which differed 
in loudness and pitch dynamism. Examples (1)–(5) (henceforth, Utterances 1–5) provide 
illustrations of the demonstration files. The speakers were only presented with the text and 
audio without any visualizations (see further details in 2.3 and 2.4); however, here we present 
the visualizations for the reader. Contextual information is provided in brackets, beneath which 
is the prompt text; the blue lines display F0 (Hz) and the red lines display intensity (dB). The 
utterances were also designed to contain a range of English monophthongs and diphthongs. 
Measurements from both the utterances and a selection of vowels were analyzed (see Section 2.6 
for details).
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(1) (Is this even food?! It’s inedible!)
My ramen aren’t inedible!

(2) (What did Emmanuel make for the bake sale?)
Emmanuel made the banana bread.

(3) (Take as many mangoes as you want! I’ve got a free supply for a year!)
Free mangoes for a whole year?!

(4) (Calling someone)
Amelia! Your noodles are ready!

(5) (Did you eat your stew?)
Do you mean my goulash? It’s a soup you know.
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2.3. Recording equipment and set-up
To be able to conduct this study, we required that all participants used the same type of high-
quality recording device as a baseline for comparison; therefore, it was necessary for participants 
to have access to an H6 with headset microphone. We provided these to each participant. 
Participants made use of their own computers and smartphones for the alternative recording 
methods, detailed below.

Participants recorded themselves, following the protocol in Supplementary Material 1, 
with a Zoom H6 recorder with Sennheiser HSP2 headset microphone, a personal smartphone 
to run the AVR recording application, as well as two personal laptop computers to run the two 
Zoom conditions simultaneously. Smartphones included both iPhones and Android devices, and 
computers included devices running both MacOS and Windows OS; see Table 1 for detailed 
information. Differences between smartphone models and computer models are not investigated 
here since it was not our goal, and it would be impossible to control the personal hardware 
participants owned. Different smartphones and computers can have an effect on some measures, 
specifically, sensitive voice quality measures (Jannetts et al., 2019; Penney et al., 2021), but 
using different equipment does not always play an important role for all measurements (e.g., 
Jannetts et al., 2019; Zhang et al., 2021). In this study, there was considerable overlap between 
participants and hardware, meaning that it would be difficult to assess what the effect of 
hardware was and what was attributable to the individual participant. In the statistical models, 
participants were accounted for, so including hardware would create a confounding factor. Given 
that the phone and computer models were randomly distributed across recording methods (i.e., 
not only one hardware model for one recording method), the effect of recording methods was 
unlikely to be crucially determined by hardware models.3 Future studies are indeed needed for 
investigating further into the differences between hardware options.

 3 The results also did not appear to have varied systematically by hardware.

Speaker 
ID

AVR phone model Zoom-default 
computer model

Zoom-raw 
computer model

PF1 iPhone 8 Mac Book Pro 2014 Acer aspire 5600

PF2 Samsung Note 10 Microsoft Surface Pro 6 Microsoft Surface Pro 6

PF3 Google Pixel 3a Lenovo Thinkpad T495 ASUS UX330U Notebook

PF4 iPhone 8 Mac Book Pro 2015 Mac Book Pro 2016

PM1 iPhone 12 Mac Book Pro 2015 Mac Book Pro 2016

(Contd.)
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Participants were provided with a PowerPoint presentation with detailed instructions for 
setting up the devices. We provide the full instruction document in Supplementary Material 1 
for the convenience of future researchers and educators who wish to use one of the methods 
reported in this paper. The instructions included how to update settings for software, and 
prepare the H6 for recording (see below), as well as what to do during the recording (e.g., clap 
before each utterance, imitate recordings as fluently as possible), and after (e.g., how to save 
and send their files). Recording set-up instructions were provided pictorially to participants 
using Figure 1: the smartphone with AVR was to be placed on a soft material such as a towel 
directly in front of the participant at a distance of 20–30 cm. The microphone at the bottom 
of the smartphone was to be pointed at the participant. The Zoom-default and Zoom-raw 
meeting computers were to be placed directly in front of the participant, approximately 40−50 
cm away, resembling a Zoom meeting setup. The Zoom-default computer was also used for 
displaying the PowerPoint presentation that contained the study instructions and prompts. The 
H6 was used with a head-mounted microphone. Participants adjusted input levels and were 
instructed to aim for a maximum input level in their normal speech of –12 dB to avoid clipping; 
levels could be monitored on the H6 device screen before recording and input levels could be 
adjusted using the level dials.

Speaker 
ID

AVR phone model Zoom-default 
computer model

Zoom-raw 
computer model

PM2 Google Pixel 3a ASUS UX330U Notebook Lenovo Thinkpad T495

PM3 iPhone 8 Mac Book Pro 2015 Mac Book Pro 2016

PM4 One plus 6 Mac Book Pro 2015 Acer aspire 5601

Table 1: Recording hardware for each participant.

Figure 1: The set-up of H6, smartphone with AVR, Zoom-default computer and Zoom-raw 
computer.
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H6 was set to record mono-channel wav files, at 44.1 kHz, 24 bits. AVR was set to record 
mono wav files, at 44.1 kHz, 256 bps. Zoom Version 5.4.9 (59931.0110) was used for both 
Zoom conditions, which recorded stereo-channel m4a files. For Zoom-default, the default Zoom 
settings with post-processing (e.g., noise-canceling) were used. For Zoom-raw, the “Turn on 
Original Sound” setting was used, along with “Disable echo cancellation” and “High fidelity 
music mode”. The advanced option of “Signal processing by Windows audio device drivers” 
on Windows computers was set to “Off (Windows – Raw)”. These options should allow Zoom 
to record with as high fidelity as possible, without using standardly applied Zoom audio filters 
or sound-altering features. Both Zoom computers were connected to the internet; however, 
the participant was the only person in the Zoom meeting, and recorded themselves using the 
“Record” function so the recording quality was not affected by internet connection. Computer 
internal microphones were used for both Zoom conditions. Zoom m4a files were converted to 
mono-channel wav files at 44.1 kHz and 256 bps using VLC (VideoLan, 2019).

2.4. Recording procedure
All recordings were made in quiet locations in the participants’ homes, where environmental 
noises were limited as much as possible. Speech data were simultaneously recorded using all four 
recording methods. Participants were asked to turn all devices to silent mode. Both computers’ 
speakers were turned off to avoid feedback. Participants were not asked to restart their devices 
or stop all other processes on their devices before recording. This was not possible because, as 
mentioned, participants viewed the PowerPoint prompt on the Zoom-default device. In this way, 
the Zoom and AVR recordings reflected a real-world use of the devices in a remote recording 
setting in which participants may be required to view files on their recording device in order to 
read target utterances or texts, describe prompt images, or play elicitation games.

Along with recording instructions, the PowerPoint presentation mentioned above also 
contained the speech materials and recording procedures. Participants were presented with each 
utterance (see 1–5 in Section 2.2) orthographically on a separate slide three times in pseudo-
randomized order. A sentence providing contextual information was also provided on the slide, 
along with the demonstration audio file of the target utterance for participants to imitate. 
Imitation was used as we wanted to elicit similar contours across participants, and pitch tracks 
with extensive pitch excursion. Participants were asked to clap once at the start of the recording 
session. For each utterance repetition, the participant played the illustrative audio file from the 
PowerPoint and then clapped their hands, paused for approximately 1 second, produced the 
utterance, and paused before proceeding to the next slide. This procedure of listening to the 
audio, clapping, and then speaking was used for each utterance and repetition. The claps were 
used to demarcate the onset of each utterance and to examine duration differences throughout 
the full recording session audio files. At the end of the task, each participant saved the recordings 
from each device (four files total) which contained all utterance repetitions. Participants emailed 
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these files to the researchers along with a metadata document containing information about the 
participant, and the hardware they used to record.

2.5. Data processing
Each utterance repetition from the recording methods was segmented as an individual file, 
including the preceding clap which was used to align the signal across matched files. This 
resulted in a total of 480 utterances for analysis (5 utterances × 8 participants × 3 repetitions 
× 4 methods).

During data preparation, it was noted that there was a temporal difference between files such 
that, over the course of the long files (i.e., the recording session files), the clap landmark points 
between the H6 and comparison methods diverged over time. We determined that this could 
be a relevant issue; an analysis of temporal alignment was incorporated into the study, and is 
discussed in Sections 2.5.1, 2.6.1, and 3.1.

Eleven phonemic vowels /iː, ɪ, e, ə, æ, ɑː, uː, aɪ, eɪ, iə, əʊ/ were selected for the combined 
vowel analysis to assess if methods had an overall effect on vowel formants (see Section 2.6.2). 
These vowels were selected because all speakers produced them and in a relatively consistent 
way. It was also possible to reliably segment them from the neighboring segments. The vowel 
categories were identified in 26 words from the five utterances, resulting in 26 target vowels 
which were unique in terms of their vowel category, word context, and utterance context (see 
bold orthographic vowels in Table 2). A total of 2496 vowels were analyzed in the combined 
vowel analysis (26 target vowels × 8 participants × 3 repetitions × 4 methods).

For the vowel space analysis, the three vowels /iː, æ, uː/ were selected as they represent the 
high-front, low, and high-back points of the vowel space. These occurred in nine words from the 
utterances, resulting in nine target vowels (see bold vowels in gray rows in Table 2). A total of 
864 vowels were analyzed in the vowel space analysis (9 target vowels × 8 participants × 3 
repetitions × 4 methods). The low-back vowel /ɑː/ was excluded from the vowel space analysis 
because it did not occur as low-back in the speech of all speakers since the native languages and 
varieties of English spoken by the speakers did not contain /ɑː/.

Vowel Word Standard lexical set keywords

iː Amelia, free, mean fleece

ɪ Emmanuel, inedible kit

e bread, ready, inedible dress

ə banana, ramen, Amelia comma

(Contd.)
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Vowels are well known to vary considerably across English varieties (e.g., Clopper et al., 
2005; Cox & Palethorpe, 2007; Wells, 1982). There are also differences in the pronunciation 
of some of the above words. For example, goulash may have either /ɑː/ or /æ/ in the second 
syllable, and the final vowel in Amelia may be realized as a diphthong or as two syllables, 
depending on the variety of English. These differences do not pose an issue for the current 
analysis in so much as each vowel is compared across recording devices, for each speaker, and 
each repetition. They could, however, present challenges in interpreting the results of the detailed 
analysis of the three vowels /iː, æ, uː/. These vowels showed variability between participants, 
attributable to the different English varieties spoken, as can be observed in Figure 2 which 
plots mean raw Hz values for F1 and F2 of these vowels for each token from the four recording 
methods. We can see in particular, for the two Australian English speakers (PF3 and PM2), a 
bimodal distribution of the /uː/ vowel, due to the fronting of the vowel in noodles and soup, and 
a more back realization in goulash. For all speakers, while there is some overlap between the 
categories, they remain broadly representative of corner vowels in that they are three vowels 
maximally distributed in the vowel space. Therefore, we deem that they are suitable for the 
illustrative examination of the recording methods, below, and can be extrapolated to the analysis 
of other vowels.

2.5.1. Praat TextGrid annotation
The data were annotated in Praat (Boersma & Weenink, 2020). Three sets of annotations were used. 
The first set of annotations was made to investigate temporal alignment differences in the whole 
recording session files. Recording session files were between ~190 s and ~350 s in duration 
with each file in a participant’s set being approximately similar in duration; for example, PM1’s 
files were 188, 191, 193, 195 seconds in duration – slight variability was due to differences in 

Vowel Word Standard lexical set keywords

æ Emmanuel, goulash, mangoes trap

ɑː aren’t, banana, ramen start

uː goulash, noodles, soup goose

aɪ my (Utterance 1), my (Utterance 5) price

eɪ made face

iə Amelia near

əʊ know, mangoes goat

Table 2: Vowel categories and their occurrences in words.
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when the participant commenced recording on each recording device. To be able to compare 
across files irrespective of these commencement differences, the matched recording session files 
were combined as individual tracks into one file and aligned to the first clap of the recording 
session. Three time points in each file set were annotated: 1) the onset of the clap before the first 
utterance (coded as early), 2) the onset of a clap around the middle of the file (coded as mid), and 
3) the onset of the clap before the last utterance (coded as end).

For the analysis of utterance duration, each utterance was saved as an individual wav file, 
and the onset and offset of each utterance across all four methods were manually annotated in 
a second set of TextGrids. This was done to compare how different recording methods influence 
utterance duration and manual segmentation precision.

The last set of annotations were used for the analyses of F0, intensity and formants across 
utterances and segments. This involved two sets of TextGrids. In the first set of TextGrids the 
onset clap before the utterance was annotated for each utterance file from the four recording 
methods. The second set of TextGrids was used to extract the measures and was created as 
follows. Using the H6 individual utterance wav files and TextGrids, segments were forced 
aligned using the ‘Interval-Align Interval’ function in Praat with Language set to British English. 
Segmentation was manually corrected following the criteria in Machač & Skarnitzl (2009). To 
use those hand corrected TextGrids to extract acoustic measures across files from the three 
test recording methods we made duplicate TextGrids with adjusted timestamps. To adjust the 
timestamps, corresponding individual utterance wav files were aligned using the onset of the 
clap before each utterance extracted from the above mentioned TextGrids with the annotated 
claps. In the TextGrids for measurement extraction, the starting time of each utterance from each 
method was adjusted using the time difference between the claps across different methods. This 
was to ensure the TextGrids were aligned with the audio from each method. The H6’s utterance 

Figure 2: Mean raw F1 and F2 values (Hz) for each token of trap (/æ/, Emmanuel, goulash, 
mangoes) fleece (/iː/, Amelia, free, mean) and goose (/uː/, goulash, noodles, soup) vowels plotted 
by recording method for each speaker, with ellipses representing 95% confidence intervals.
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length was used to ensure the same number of data points could be extracted. In this way, we 
ensured that we extracted the measures of interest from the same time points across files from 
the four recording methods.

2.5.2. Measure extraction
Praat was used to extract all acoustic measures. For utterances, the measures of F0, and intensity 
(raw and normalized values) were extracted every 10 ms across entire utterances. Intensity was 
normalized using the “Scale intensity” function in Praat using the standard value of 70 dB as the 
new average intensity. Raw intensity values were extracted from the files as recorded. For the 
vowel analyses, F0, F1, and F2 were extracted every 10 ms based on onset and offset boundaries 
of the vowels. F0 was extracted using a range of 30–650 Hz after inspecting the minimum and 
maximum F0 values in the whole corpus. F1 and F2 data were extracted using a range of 0–5000 
Hz for male speakers and 0–5500 Hz for female speakers.

2.6. Data analysis
2.6.1. Utterance duration and temporal alignment difference
As mentioned in Section 2.5, utterance start and end times were manually annotated in the 
individual utterance files to compare their duration across recording methods. The aim of this 
comparison was to investigate how reliable the home recordings were in terms of duration, as 
this has been found to be an issue in files that are compressed/decompressed or transferred 
over the internet (Sanker et al., 2021). Since the calculation had to inevitably rely on manual 
segmentation, the duration was also a reflection of how easy and accurate manual segmentation 
can be for the audio files recorded using different methods. Therefore, any discrepancies included 
both factors: temporal differences due to the method and differences due to ease of segmentation 
for a human annotator.

Utterance duration from the baseline H6 was compared with utterance duration from the 
three comparison methods. A linear mixed effect model was built in R (R Core Team, 2021) using 
the lme4 package (Bates et al., 2015) to test whether the differences were statistically significant. 
The dependent variable was duration; recording method was the fixed effect, and repetition, subject, 
and utterance were fitted as random intercepts.

To investigate temporal alignment over the whole recording session files, simple linear 
models were fitted for each recording method to examine whether the temporal difference was 
in a linear relationship with the time points in H6 recordings.

2.6.2. Dynamic analysis of F0, intensity, F1 and F2
In order to trace the dynamic difference across different recording methods, we analyzed the 
acoustic measures (F0 and intensity for utterances; F1, F2 for vowels) using Generalized Additive 
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Mixed Models (GAMMs, Wood, 2017). GAMMs are “an extension of generalized linear mixed 
models” that as well as parametric terms, allow for the inclusion of smooth terms which model 
nonlinear shapes, and estimate their degree of wiggliness. Therefore, GAMMs enable us to 
model nonlinear effects of the predictors, and for this reason they have been used to study 
response variables in phonetics that vary along the temporal domain, such as tongue movement 
trajectories (Wieling et al., 2016) and pitch contours (Chuang et al., 2021; Kösling et al., 2013; 
Sun & Shih, 2021).

GAMMs build on the assumption that the residual errors should be independent and  
identically distributed. The current dataset, however, consists of a substantial number of extreme 
values. As these outliers are potentially informative about the recording quality of different 
methods, we did not remove these data points just to meet the requirement of homoscedasticity. 
We therefore turned to the quantile GAMMs (QGAMMs, Fasiolo et al., 2020), an extension of 
GAMMs that makes it possible to model different quantiles in the distribution of the response 
variables. Importantly, QGAMMs do not have any distribution assumption with regards to 
residuals, so we could still model the time-varying effect of the acoustic measures while retaining 
all our data points.

Since we are interested in the differences in recording methods, we fitted QGAMMs, with 
difference smooths. That is, we set H6 as the reference level, and directly modeled the difference 
between H6 and the other three recording methods across time. In addition, we included 
nonlinear by-speaker and by-item (utterance or vowel) random effects by means of factor 
smooths, so that the method differences that we observed steered away from speaker and item 
variability. It is worth noting that while GAMMs can deal with the issue of autocorrelation, that 
is, the response variable at time t is dependent on that at time t − 1, this is not yet implemented 
in QGAMMs. Because of this limitation, and the size of our dataset, we were cautious and 
remained conservative about the effects, only considering the effects to be significant when the 
p value was smaller than .0001 (c.f. Chuang et al., 2021).

3. Results
In reporting the results of the QGAMMs, both contour height and contour shape are discussed. 
For each analysis, we first present an average plot to illustrate the raw data produced by 
different methods. Then, the model outputs from the QGAMMs are reported in tables. We 
compare contours from the three test methods with the contours from H6. Each table is 
divided into two parts: parametric coefficients and approximate significance of smooth terms. 
A significant difference in the parametric coefficients (Pr(>|z|) < .0001) suggests that the 
contours, irrespective of their shape, are different in height at the intercept. A significant 
difference in the approximate significance of smooth terms (p < .0001) suggests that the 
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contours differ in terms of shape, or their trajectory, but does not specify in a particular 
direction (as it may vary) nor where the difference is observed along the contour. In the smooth 
term model summary, an effective degree of freedom (edf) indicates the relationship between 
the two contours, for example, an edf of 1 indicates that the relationship is linear. Lastly, we 
use the difference plots to illustrate the model results and show how different methods deviate 
from the H6 baseline method. The difference plots can shed light on where the contours vary. 
The model estimate of each comparison method is shown as a solid line with ±2 standard 
errors in dashed lines. When a recording method is not different from the baseline method, the 
area between the dotted lines includes the horizontal reference line (y = 0). When there is a 
difference between the two, the distance of the dotted lines from the horizontal reference line 
indicates how large the difference is, with the difference being larger as the dotted lines are 
further from the reference line.

Before reporting of F0, intensity, and formants, however, we present findings from the 
analysis of duration and temporal alignment over the files.

3.1. Temporal aspects
As mentioned, a temporal alignment difference was noted over the whole recording session files 
(average recording session duration ≈ 178.2 s per session). However, most phonetic analyses 
only include smaller files of several seconds in duration (average utterance length ≈ 2.02 s 
per utterance). Therefore, we report the utterance-level duration findings first in 3.1.1, and the 
temporal alignment issue in the longer recording session files in 3.1.2.

3.1.1. Utterance duration
Impressionistically, temporal differences at the utterance level were not directly observable 
when conducting the manual segmentation stage, so the discrepancies were expected to be small 
overall for files of that duration. We note that it was slightly more difficult to annotate files 
produced by the two Zoom methods which could be attributable to, for example, less clear 
information in the spectrogram and waveform.

On average, as shown in Figure 3, utterances recorded by AVR were shorter than H6 by 
2.1 ms; Zoom-default were shorter by 3.3 ms; and Zoom-raw utterances were shorter by 11.4 
ms. This level of temporal difference is usually negligible in most phonetic studies since human 
annotation differences can sometimes be much larger.

We also ran a linear mixed-effect model to test whether these utterance-level temporal 
differences were statistically significant. Results showed no significant difference for any 
recording method, as presented in Table 3.
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3.1.2. Temporal alignment issue
While the temporal difference is negligible on the utterance level, when a recording session 
becomes longer, the temporal difference between files becomes increasingly larger. To investigate 
the observed misalignment over time between recording methods, we chose three time points in 
each recording session file to compare across recordings, as reported in Section 2.5.1.

The temporal difference data, that is, the time point value of a comparison method 
(AVR/Zoom-default/Zoom-raw) minus the time point value of the baseline H6, are shown 
in Figure 4. The ms values reported are averages across speakers. AVR recordings started 
by having an earlier start than the H6 of 0.4 ms, and by the end, they were later than H6 
recordings by 1.64 ms. Over the course of three minutes or more (i.e., the duration of our 
recording session files), this difference is extremely small for the AVR recordings, and we 
consider it to be trivial. Zoom-default, on the other hand, was earlier than H6 at the early time 
point by 3.95 ms. Over time, the temporal difference gradually became larger, and reached 
−27.55 ms by the last time point. Zoom-raw had a similar temporal difference and reached 
−25.65 ms by the last time point.

Parameter Estimate SE df t Pr(>|t|)

(Intercept) 2.018 0.177 7.5 11.424 <.001

methodAVR 0.002 0.017 466.0 0.125 .901

methodZoom-default −0.001 0.017 466.0 −0.069 .945

methodZoom-raw −0.009 0.017 466.0 −0.552 .581

Table 3: Results from the linear mixed effect model for duration (intercept, H6). Final model: 
duration ~ method + (1|repetition) + (1|subject) + (1|utterance).

Figure 3: Mean utterance duration differences between AVR, Zoom-default, Zoom-raw and H6.
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The linearity between the temporal difference and time in H6 recording was tested with 
three separate simple linear models. The results of the temporal difference for AVR and the time 
of H6 suggest that they did form a linear relationship (t = 4.49, p < .001); however, the adjusted 
R2 was only .289, which indicated that only 28.9% of the data were explained by the linear 
model. The result from the Zoom-default was t = −37.21, p < .001, adjusted R2 = .968, which 
suggested a strong linear relationship between the Zoom-default temporal difference and the H6 
time. Similarly, Zoom-raw reported t = −45.66, p < .001, adjusted R2 = .978, also indicating a 
strong linear relationship. The linearity can be observed in Figure 5: as the time of H6 proceeds 
(i.e., at later points in an audio file), the temporal difference becomes larger in a linear fashion, 
especially for the two Zoom methods.

Figure 4: Temporal difference between AVR, Zoom-default, Zoom-raw and H6 at different 
time points.

Figure 5: Linear regression of the temporal difference and Zoom H6 time.
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3.2. Utterances
3.2.1. F0
Figure 6 shows the average F0 contours for each method across all utterances, speakers and 
repetitions. As indicated in Figure 6, the contours from each recording method are very similar 
overall. From the QGAMMs analysis, there is no evidence that utterance F0 contours from 
AVR, Zoom-default or Zoom-raw differed significantly from those of the H6. Firstly, there is no 
significant difference in the parametric coefficient (i.e., intercept height in Table 4). Further, for 
the smooth terms (“approximate significance of smooth terms” in Table 4), no difference was 
significant. These results are reflected in the difference plots (Figure 7) that show the confidence 
intervals for the AVR, Zoom-default and Zoom-raw difference curves are overlapped with the 
horizontal y = 0 line. Although towards the end of the curve, the two Zoom measures are not 
overlapping with the y = 0 line, indicating a small difference, the overall difference did not 
reach significance according to the results in Table 4.

In the following subsections, difference plots are presented for each measurement, and model 
predictions are shown for the ways in which the contours vary from the predicted contour for 
H6; where y = 0, the two contours do not differ in shape. In Figure 7, the first panel shows 
the model prediction for the H6 contour, taking into account speaker and utterance variability, 
followed by the difference plots for AVR, Zoom-default and Zoom-raw. In subsequent plots, only 
the difference curves are presented. Significant results are annotated in the plot.

Figure 6: Average utterance F0 (Hz) contours by method, across all speakers, utterances and 
repetitions.
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Figure 7: Predicted utterance F0 contour for H6 (left) and difference plots for utterance F0 for 
the three test methods (AVR difference curve, center left; Zoom-default difference curve, center 
right; Zoom-raw difference curve, right).

Parametric coefficients

Parameter Estimate SE z Pr(>|z|)

(Intercept) 266.16522 25.96188 10.252 <2e−16

genderM −139.09013 9.72814 −14.298 <2e−16

methodAVR 0.06214 0.26893 0.231 .817

methodZoom-default −0.05097 0.27186 −0.187 .851

methodZoom-raw −0.00886 0.27064 −0.033 .974

Approximate significance of smooth terms

edf Ref.df Chi.sq p

s(measurement.no) 12.802 13.479 24.415 .0260

s(measurement.no):methodOrdAVR 1.077 1.148 0.058 .8973

s(measurement.
no):methodOrdZoom-default

4.747 5.929 12.870 .0431

s(measurement.
no):methodOrdZoom-raw

4.880 6.093 10.951 .0930

s(measurement.no,speaker) 137.133 158.000 26734.829 <2e−16

s(measurement.no,utterance_id) 87.625 99.000 76212.693 <2e−16

Table 4: Summary of utterance F0 QGAMM. Final model: f0 ~ gender + method + s(measurement.
no, k = 20) + s(measurement.no, by = methodOrd, k = 20) + s(measurement.no, speaker, 
bs = “fs”, m = 1, k = 20) + s(measurement.no, utterance_id, bs = “fs”, m = 1, k = 20).
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3.2.2. Intensity
As shown in Figure 8 (left panel), raw intensity values exhibited an overall height difference. 
However, the difference was expected since the different methods were placed at different distances 
from the speaker’s mouth. H6 had overall higher intensity than the three comparison methods, 
and this was supported in the analysis of the data (see Supplementary Material 2).4 Therefore, 
we normalized the intensity data (discussed in Section 2.5) and the analysis of those data is 
presented below. Despite normalization, contour intercept height was significantly higher for AVR 
(see Table 5). The contour shapes for all comparison methods were also significantly different 
from the H6, as seen in the significant results for the smooth terms (Table 5). From inspecting 
the difference plots (Figure 9), we can see that the differences are greatest at the beginning of the 
contour for all methods (where the curve is furthest from the y = 0 line). Zoom-default and Zoom-
raw quickly rise to relatively consistent differences from H6, while AVR gradually rises over time. 
Visual inspection of the difference plots (Figure 9) and average contours (Figure 8, right panel) 
together suggests that the intensity differences are most different for AVR at around measurement 
points 0.5 and 0.8, for Zoom-default at around 0.5, and for Zoom-raw at 0.8. These are points 
when the normalized intensity of the respective recording method is higher than that of H6.

 4 Also available through the project’s OSF repository https://osf.io/34m5s/. 

Figure 8: Average utterance intensity (dB, left) and normalized intensity (dB, right) contours by 
method, across all speakers, utterances and repetitions.

Figure 9: Difference plots for utterance normalized intensity (AVR difference curve, left; Zoom-
default difference curve, center; Zoom-raw difference curve, right).

https://osf.io/34m5s/
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3.3. Vowels
3.3.1. Formants
Here, F1 and F2 formant values are considered for all vowels together to investigate if there is an 
overall effect of recording method that results in higher or lower values.5 Vowel spaces based on 
/iː, æ, uː/ for all participants, and by gender are considered in Section 3.3.2.

Regarding F1, there were significant differences in intercept as well as contour shape and 
overall contour height (Table 6). As can be seen in the average contour plots (Figure 10), the 
three comparison methods had overall lower F1 values than H6. Note however, that there are 
differences over time: For example, the Zoom-default contour had the lowest starting value, 
followed by a quick rise to approximately the H6 level, then declined at a slower rate than H6, 
which resulted in a higher value at the end (see also the difference plots in Figure 11, discussed 

 5 Vowel F0 results are available in Supplementary Material 3.

Parametric coefficients

Parameter Estimate SE z Pr(>|z|)

(Intercept) 78.09171 4.59853 16.982 <2e−16

methodAVR 0.22847 0.03138 7.281 3.32e−13

methodZoom-default 0.01382 0.03140 0.440 .659869

methodZoom-raw −0.12679 0.03262 −3.887 .000102

Approximate significance of smooth terms

edf Ref.df Chi.sq p

s(measurement.no) 16.84 17.21 1043.6 <2e−16

s(measurement.no):methodOrdAVR 12.22 14.56 320.0 <2e−16

s(measurement.no):methodOrd-
Zoom-default

15.37 17.37 263.0 <2e−16

s(measurement.no):methodOrd-
Zoom-raw

16.80 18.30 255.7 <2e−16

s(measurement.no,speaker) 135.06 159.00 8928.4 <2e−16

s(measurement.no,utterance_id) 87.25 99.00 84438.2 <2e−16

Table 5: Summary of normalized utterance intensity QGAMM. Final model: intensity ~ 
method + s(measurement.no, k = 20) + s(measurement.no, by = methodOrd, k = 20) + 
s(measurement.no, speaker, bs = “fs”, m = 1, k = 20) + s(measurement.no, utterance_id, bs = 
“fs”, m = 1, k = 20).
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further, below). In terms of height, AVR has the smallest intercept difference; −11 ± 2 Hz 
(p < .0001). Zoom-default had a difference of −17 ± 2 Hz (p < .0001), while Zoom-raw had the 
largest difference of −43 ± 2 Hz (p < .0001). The significant smooth terms for all comparison 
methods suggest that the F1 contours are different in shape from the H6 contours. These differences 
are reflected in the difference plots (Figure 11). The AVR difference curve is close to the y = 0 
line, suggesting that the AVR contour is similar in shape to H6’s, though still differs over time. 
The two Zoom difference plots show that F1 contours for both methods are different from H6’s.

Regarding F2, only the Zoom-default contour is significantly different from H6’s, and 
this is observed in both the parametric coefficient and smooth terms (Table 7). The Zoom-
default intercept is an estimated 15 ± 3 Hz (p < .0001) higher than H6. The smooth term 
(Table 7) shows that there is little overlap between the Zoom-default and the H6 contour, and 
the difference smooth plot (Figure 12) shows that over the course of the vowel, the difference 
decreases and then increases. This is in part due to the Zoom-default F2 values not declining at 
the same rate at H6; this can be observed in the average F2 plot (Figure 10). Whereas, both AVR 
and Zoom-raw are similar in contour shape and height to H6 in the average contour plot (Figure 
10) and the difference plots (Figure 11). Note that for all methods, edf is near 1, suggesting a 
near linear relationship, as reflected in the relatively straight lines in the difference plots.

Figure 10: Average vowel F1 (left) and F2 (right) by method, across all speakers, vowels, and 
repetitions.

Figure 11: Difference plots for F1 over all vowels (AVR difference curve, left; Zoom-default 
difference curve, center; Zoom-raw difference curve, right).
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Figure 12: Difference plots for F2 over all vowels (AVR difference curve, left; Zoom-default 
difference curve, center; Zoom-raw difference curve, right).

Parametric coefficients

Parameter Estimate SE z Pr(>|z|)

(Intercept) 682.777 23.562 28.977 <2e−16

genderM −155.259 16.446 −9.441 <2e−16

methodAVR −11.054 1.516 −7.290 3.09e−13

methodZoom-default −17.144 1.584 −10.821 <2e−16

methodZoom-raw −42.937 1.638 −26.220 <2e−16

Approximate significance of smooth terms

edf Ref.df Chi.sq p

s(measurement.no) 7.009 7.466 160.16 <2e−16

s(measurement.no):methodOrdAVR 2.885 3.588 23.56 8.59e−05

s(measurement.
no):methodOrdZoom-default

3.629 4.493 197.70 <2e−16

s(measurement.
no):methodOrdZoom-raw

2.274 2.835 98.82 <2e−16

s(measurement.no,speaker) 48.519 70.000 1997.66 <2e−16

s(measurement.no,vowel_id) 178.676 233.000 47776.86 <2e−16

Table 6: Summary of combined vowel F1 QGAMM. Final model: f1 ~ gender + method + 
s(measurement.no) + s(measurement.no, by = methodOrd) + s(measurement.no, speaker, 
bs = “fs”, m = 1) + s(measurement.no, vowel_id, bs = “fs”, m = 1).
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3.3.2. Vowel spaces
To investigate if the methods altered the shape of the vowel space, that is, have different effects 
on formants depending on the Hz range in which they occur, we considered the three vowels 
/iː, æ, uː/. These vowels are representative of height and backness differences in the vowel 
space, and approximations of somewhat similar vowels were observed in the speech of all eight 
participants. Average contours are visualized in Figure 13, while the difference plots for F1 are 
presented in Figure 14, and for F2 in Figure 15. A successive analysis, below (also included in 
the vowel analysis in Supplementary Materials 2), investigated the vowel spaces for women and 
men separately.

Parametric coefficients

Parameter Estimate SE z Pr(>|z|)

(Intercept) 1851.556 60.490 30.609 <2e−16

genderM −251.629 51.626 −4.874 1.09e−06

methodAVR 1.909 3.307 0.577 .564

methodZoom-default 15.125 3.250 4.654 3.26e−06

methodZoom-raw 5.230 3.317 1.577 .115

Approximate significance of smooth terms

edf Ref.df Chi.sq p

s(measurement.no) 5.833 6.342 20.796 .00271

s(measurement.no):methodOrdAVR 1.009 1.018 0.894 .34900

s(measurement.
no):methodOrdZoom-default

1.735 2.160 12.931 .00236

s(measurement.
no):methodOrdZoom-raw

1.032 1.062 1.719 .19354

s(measurement.no,speaker) 42.374 70.000 2694.238 <2e−16

s(measurement.no,vowel_id) 189.030 233.000 60533.855 <2e−16

Table 7: Summary of combined vowel F2 QGAMM. Final model: f2 ~ gender + method + 
s(measurement.no) + s(measurement.no, by = methodOrd) + s(measurement.no, speaker, 
bs = “fs”, m = 1) + s(measurement.no, vowel_id, bs = “fs”, m = 1).
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Regarding F1, for /iː/, there was no significant difference in contour shape for any method 
nor a significant difference in contour height at the intercept for AVR. However, there were 
significant differences for the Zoom methods; the F1 intercept for Zoom-default was significantly 
lower than H6’s by an estimated −55 ± 8 Hz (p < .0001), and was lower for Zoom-raw by an 
estimated −56 ± 8 Hz (p < .0001). For /æ/ F1, there were no significant differences in contour 
height at the intercept, but there was a significant shape difference for Zoom-default and Zoom-
raw (see difference curves in Figure 14, mid panel, and average contours in Figure 13, center 
panel). For /uː/ F1, there were no significant differences in contour shape, but there was a 
significant difference in contour height at the intercept for Zoom-default and Zoom-raw, which 
in both cases resulted in lower values than H6; −36 ± 9 Hz p < .0001 for Zoom-default, and 
−43 ± 8 Hz, p < .0001. Interestingly, as can be observed in the difference plots (Figure 14, 
lower panel) and edf values (Table 8), the differences between methods and H6 for F1 of the 
two high vowels /iː, uː/ are nearly linear, whereas the differences for the two Zoom methods of 
the low vowel /æ/ are not linear. Further, for the two high vowels, both Zoom methods resulted 
in consistently lower values than H6.

Regarding F2, for /iː/ there were no significant height differences (Table 8). The 
approximate significance of smooth terms, as well as difference plots (Figure 15, upper 
panel) suggest that both Zoom-default and Zoom-raw contours are significantly different 
from H6, and for Zoom-default, this is nearly a linear relationship. F2 of /æ/ did not differ 
significantly in any respect for any method. For /uː/, there was a significant difference in 
contour intercept height for Zoom-default and Zoom-raw such that both methods resulted 
in higher F2 values than H6; Zoom-default had higher F2 by an estimated 79 ± 12 Hz (p < 
.0001), Zoom-raw had higher F2 by an estimated 59 ± 14 Hz (p < .0001). There were no 
significant contour shape differences.

Through visualizing these results in the F1-F2 space, it is clear that the formant differences 
for /iː, æ, uː/ result in different vowel spaces captured by the recording methods, and that the 
differences change over time. Figure 16 shows average values across speakers and repetitions for 
/iː, æ, uː/ at 10% (left), 50% (center) and 90% (right) time point through the vowel. Overall, we 
can see that AVR patterns with H6, and these differ from the two Zoom methods. Further, the two 
Zoom methods provide lower values for the F1 of the high vowels /iː/ and /uː/, evidenced by the 
lower intercept (Table 8). The three plots from different time points in the vowels’ productions 
show that over the course of time, the vowel space of the two Zoom methods, as compared to that 
of H6, is first compressed and then expanded. There are two predominant sources of this: first, 
/æ/’s F1 of the two Zoom methods is first lower than that of H6, and then gradually becomes 
higher (Figure 14, mid panel). Second, /iː/’s F2 from the two Zoom methods is also first lower 
than that of H6, and then gradually becomes higher (Figure 15, upper panel).
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Figure 13: Average contours for F1 and F2 (Hz) for /iː/ (left), /æ/ (center) and /uː/ (right) 
vowels, by method, across all speakers and repetitions.

Figure 14: Difference plots for F1 for /iː/ (top), /æ/ (middle) and /uː/ (bottom); AVR (left), 
Zoom-default (center), Zoom-raw (right).
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Figure 15: Difference plots for F2 for /iː/ (top), /æ/ (middle) and /uː/ (bottom); AVR (left), 
Zoom-default (center), Zoom-raw (right).

Figure 16: First and second formant values (Hz) for /iː/, /æ/ and /uː/ at the 0.1 time point (left), 
midpoint (center) and 0.9 time point (right), plotted in F1-F2 vowel space.
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Parametric coefficients

Parameter Estimate SE z Pr(>|z|)

(Intercept) 903.151 31.333 28.825 <2e−16

genderM −202.627 28.674 −7.067 1.59e−12

formantVowf1.i −352.403 38.660 −9.115 <2e−16

formantVowf1.u −375.441 8.693 −43.188 <2e−16

formantVowf2.æ 880.827 8.163 107.905 <2e−16

formantVowf2.i 1431.460 39.069 36.639 <2e−16

formantVowf2.u 611.806 10.978 55.729 <2e−16

IsAVR.f1.a1 −21.248 6.665 −3.188 .001433

IsAVR.f1.i1 10.669 7.852 1.359 .174219

IsAVR.f1.u1 −2.913 8.246 −0.353 .723907

IsAVR.f2.æ1 4.144 9.306 0.445 .656085

IsAVR.f2.i1 3.596 10.886 0.330 .741116

IsAVR.f2.u1 0.792 13.107 0.060 .951816

IsZoom.default.f1.æ1 11.572 7.368 1.570 .116303

IsZoom.default.f1.i1 −55.329 8.289 −6.675 2.47e−11

IsZoom.default.f1.u1 −35.947 8.664 −4.149 3.34e−05

IsZoom.default.f2.æ1 −3.275 9.377 −0.349 .726903

IsZoom.default.f2.i1 3.698 11.107 0.333 .739161

IsZoom.default.f2.u1 78.956 11.963 6.600 4.12e−11

IsZoom.raw.f1.æ1 −25.915 7.523 −3.445 .000571

IsZoom.raw.f1.i1 −55.882 8.095 −6.903 5.09e−12

IsZoom.raw.f1.u1 −43.226 8.473 −5.102 3.37e−07

IsZoom.raw.f2.æ1 5.805 9.425 0.616 .537955

IsZoom.raw.f2.i1 18.377 11.171 1.645 .099975

IsZoom.raw.f2.u1 59.192 13.507 4.382 1.17e−05

(Contd.)
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(Contd.)

Approximate significance of smooth terms

edf Ref.df Chi.sq p

s(measurement.no):formantVowf1.æ 5.752 6.778 195.124 <2e−16

s(measurement.no):formantVowf1.i 1.011 1.016 6.520 .0109

s(measurement.no):formantVowf1.u 2.305 2.727 11.662 .0119

s(measurement.no):formantVowf2.æ 4.148 5.014 70.934 <2e−16

s(measurement.no):formantVowf2.i 6.631 7.710 449.500 <2e−16

s(measurement.no):formantVowf2.u 4.421 5.365 100.002 <2e−16

s(measurement.no):IsAVR.f1.æ1 1.005 1.009 4.962 .0264

s(measurement.no):IsAVR.f1.i1 1.006 1.012 1.687 .1968

s(measurement.no):IsAVR.f1.u1 1.009 1.018 0.138 .7169

s(measurement.no):IsAVR.f2.æ1 1.006 1.011 0.331 .5698

s(measurement.no):IsAVR.f2.i1 1.025 1.050 1.739 .2010

s(measurement.no):IsAVR.f2.u1 1.462 1.779 1.516 .3127

s(measurement.no):IsZoom.default.
f1.æ1

3.333 4.134 56.622 <2e−16

s(measurement.no):IsZoom.default.
f1.i1

1.007 1.013 0.332 .5690

s(measurement.no):IsZoom.default.
f1.u1

1.008 1.016 0.047 .8421

s(measurement.no):IsZoom.default.
f2.æ1

1.130 1.243 1.636 .3000

s(measurement.no):IsZoom.default.
f2.i1

1.021 1.042 49.325 <2e−16

s(measurement.no):IsZoom.default.
f2.u1

1.616 1.994 2.566 .2586

s(measurement.no):IsZoom.raw.f1.æ1 2.617 3.257 23.084 6.83e−05

s(measurement.no):IsZoom.raw.f1.i1 1.049 1.093 0.374 .5495

s(measurement.no):IsZoom.raw.f1.u1 1.010 1.019 0.036 .8808
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Further examination of the F1 and F2 data was performed, investigating female and male 
speech separately (see Figure 17 for average vowel spaces; female, left, and male, right; 
full result table available in Supplementary Material 2). The analyses showed that time-
varying effects (i.e., contour shape differences) on F1 and F2 generally hold for both genders. 
However, there are intercept differences that patterned differently by gender. For example, 
for F1, the intercepts for /iː/ and /uː/ in the male data as recorded by both Zoom methods 
were not significantly different from H6, whereas they were for the data overall, presumably 
because of the effect in the female data (/iː/ Zoom-default: −69 ± 8 Hz, p < .0001; /iː/ Zoom-
raw: −73 ± 8 Hz, p < .0001; /uː/ Zoom-default: −71 ± 13 Hz, p < .0001; /uː/ Zoom-raw: 
−63 ± 13 Hz, p < .0001). The intercept for /æ/ F1 Zoom-raw data was significantly different 
from H6 in the male data, but not overall. For F2, a main difference was that the Zoom-raw 
intercept for /uː/ was not found to be significantly different from the H6 in the female data, 
but was in the male data (111 ± 13 Hz, p < .0001). Other intercept results conform to the 
patterns observed overall.

Approximate significance of smooth terms

edf Ref.df Chi.sq p

s(measurement.no):IsZoom.raw.f2.æ1 2.063 2.574 10.143 .0135

s(measurement.no):IsZoom.raw.f2.i1 2.421 3.017 32.645 <2e−16

s(measurement.no):IsZoom.raw.f2.u1 1.002 1.004 2.993 .0839

s(measurement.no,speaker) 27.335 70.000 643.185 <2e−16

s(measurement.no,word2) 28.461 70.000 1755.168 <2e−16

Table 8: Summary of /iː, æ, uː/ F1 and F2 QGAMM. Final model: formantValue ~ gender + 
formantVow + s(measurement.no, by = formantVow) + s(measurement.no, by = IsAVR.
f1.a) + IsAVR.f1.a + s(measurement.no, by = IsAVR.f1.i) + IsAVR.f1.i + s(measurement.
no, by = IsAVR.f1.u) + IsAVR.f1.u + s(measurement.no, by = IsAVR.f2.a) + IsAVR.f2.a + 
s(measurement.no, by = IsAVR.f2.i) + IsAVR.f2.i + s(measurement.no, by = IsAVR.f2.u) 
+ IsAVR.f2.u + s(measurement.no, by = IsZoom.default.f1.a) + IsZoom.default.f1.a + 
s(measurement.no, by = IsZoom.default.f1.i) + IsZoom.default.f1.i + s(measurement.no, by 
= IsZoom.default.f1.u) + IsZoom.default.f1.u + s(measurement.no, by = IsZoom.default.f2.a) 
+ IsZoom.default.f2.a + s(measurement.no, by = IsZoom.default.f2.i) + IsZoom.default.f2.i + 
s(measurement.no, by = IsZoom.default.f2.u) + IsZoom.default.f2.u + s(measurement.no, by 
= IsZoom.raw.f1.a) + IsZoom.raw.f1.a + s(measurement.no, by = IsZoom.raw.f1.i) + IsZoom.
raw.f1.i + s(measurement.no, by = IsZoom.raw.f1.u) + IsZoom.raw.f1.u + s(measurement.
no, by = IsZoom.raw.f2.a) + IsZoom.raw.f2.a + s(measurement.no, by = IsZoom.raw.
f2.i) + IsZoom.raw.f2.i + s(measurement.no, by = IsZoom.raw.f2.u) + IsZoom.raw.f2.u + 
s(measurement.no, speaker, bs = “fs”, m = 1) + s(measurement.no, word2, bs = “fs”, m = 1).
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4. Discussion
In this study, we examined the effects of three remote recording methods on speech data, 
comparing them with simultaneous lab-quality baseline recordings, to assess their suitability in 
remote data collection for phonetic studies, using speech data collected from eight participants. 
We evaluated AVR, a non-lossy format file recording smartphone application, and the 
conferencing app Zoom with and without post-processing, all used to record locally. We took 
a dynamic approach to investigate the effects of recording method on utterances and vowels: 
using QGAMMs to model F0 and intensity contours of utterances, and F1 and F2 of vowels. 
Linear mixed effects methods were used to analyze temporal measures. In the following sections 
we review the findings, situating them in the literature, and venture some speculations as to the 
causes for what we observed.

4.1. Temporal measures
We examined both the duration of utterances across the recording methods and time points 
throughout the whole recording session files. While we found small differences in utterance 
duration between the comparison recording methods and the H6 method, these differences are 
considered to be negligible as they were in the range of 2 ms to 11 ms. Ladefoged (2003, p. 140) 
argued that duration measurements should only be reported to the nearest 5 ms since it is 
impossible to “make a reliable measurement of a duration in tenths of a millisecond”. This 
suggests that the differences of 2.1 ms (AVR) and 3.3 ms (Zoom-default) from H6 are within 
an acceptable error range. Although Zoom-raw had the biggest difference in duration, it was 

Figure 17: Average first and second formant values (Hz) for /iː/, /æ/ and /uː/, plotted in the 
F1-F2 vowel space for female data on the left, and male data on the right.
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only 11.4 ms on average. The differences in all three methods could be attributable to manual 
segmentation issues at the utterance boundaries; the values we observe are within the region 
of what has been found in inter-rater reliability studies (Machač & Skarnitzl, 2009, pp. 13–14). 
In any case, the statistical analysis did not reach significance. Therefore, we conclude that the 
duration captured by all methods did not pose an issue in analyzing the duration of utterances. 
Furthermore, we suggest that the durational differences for individual words and segments 
would not be affected substantially using these three methods.

However, we did observe a timing issue in Zoom-default and Zoom-raw recordings over 
the long, recording session files. AVR files did not present a substantial temporal difference 
from H6 files overall, while files created using the two Zoom methods diverged from the H6 
files in a linear fashion, with the difference increasing over time. Temporal landmarks in the 
files created using the two Zoom methods were earlier than those in the H6 recordings, and 
became increasingly earlier over time. This temporal difference may affect the extraction of 
other measures when an audio data file is long. For example, the temporal alignment difference 
was revealed in our case when we attempted to use only one annotated TextGrid (from the 
H6 recordings) for each participant across all recording session files. The findings discussed 
above for the utterance files lead us to believe that if words or segments are investigated, the 
temporal difference would be small enough to be negligible across the recording methods. We 
were confident in this assessment, and so used only one set of annotated files to extract F0 and 
formant measure for analysis (see Section 2.5.1 for details).

It is unclear what factors contributed to this discrepancy. Sanker et al. (2021) have also 
reported a similar issue in Zoom, Cleanfeed, and Messenger. However, from the figures they 
presented, the temporal difference did not seem to increase linearly through time, and was 
appreciably larger for Cleanfeed and Messenger than Zoom, which appeared negligible (as it 
was in the present study). Our speculation is that the temporal difference was caused by the 
compression and decompression of the files; because the difference is linear, we assume that 
something is affecting the audio in a small way consistently throughout a recording when using 
Zoom with any settings. The differences in the recording session files could also come about 
from how silences are treated by a Zoom algorithm, which was not made publicly available 
in any documentation on their website. Beyond unknown algorithms used by Zoom, in online 
discussions, Zoom users have posed questions about large differences between audio files 
recorded through Zoom. Some suggested that in Zoom meeting recordings the mute button 
acts as a pause button in effect, with participants only being recorded when not on mute. This 
does not appear to be the case in our data as the participants did not use the mute button, and 
we believe this would result in inconsistent differences, not the small linear increase in the 
difference we observe.
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4.2. F0
In line with previous research, F0 over the utterances was found to be accurately captured by all 
recording methods. This finding suggests that prosody researchers can reliably use F0 recorded 
by AVR and Zoom with either setting. This applies to both static F0 measures (e.g., single F0 point 
or mean F0 values), as has been found in previous research (e.g., Fahed et al., 2022; Jannetts et 
al., 2019; Maryn et al., 2017; Vogel et al., 2015; Zhang et al., 2021) and when investigating F0 
contour shape as we did here. While not significant, it was interesting to note that F0 contours 
from both Zoom methods had similar difference curves, suggesting that this is an effect of the 
Zoom software, and not of participants’ devices or due to individuals.

4.3. Intensity
Intensity contours showed considerable contour shape differences between the test methods and 
H6. Normalization only served to account for a height difference that reflected the distance 
the speakers were from the recording devices. The retention of the contour shape differences 
suggests that intensity values cannot simply be corrected for by normalization, as differences 
were not consistent over time (cf. Penney et al., 2021). For example, intensity as recorded by 
AVR increased over time, reflected in an average intensity contour that started lower than H6 
and concluded higher (Figure 8, right panel). The differences in shape for the test methods 
may pose an issue for prosody researchers who want to compare intensity between syllables, for 
example; it appears that using any of these three methods, the relative difference may not be 
accurately captured. Moreover, as pointed out by Zhang et al. (2021), Zoom-default presented 
periods of extremely reduced intensity occurring at random; an issue that persisted in the 
recordings analyzed in this paper. We speculate that this issue arises from a Zoom feature that is 
designed to remove background noise, inadvertently being applied to speech.

4.4. Formants
As was anticipated, formants were not always reliably tracked by the comparison methods. The 
combined vowel analysis showed F1 was overall lower for all test methods. The analysis of the 
three vowels /iː/, /æ/ and /uː/ revealed that the two Zoom methods resulted in lower intercept 
values for the two high vowels /iː/ and /uː/, and these values remained lower over time. In 
Zhang et al. (2021), the mean F1 value in Zoom (default mode) recordings was reported to be 
significantly lower for the eight cardinal vowels combined; in particular, the low vowels /a/ and 
/ɑ/ were observed to have the largest variance. While the results from Zhang et al. (2021) and 
the current study did not concur wholly, they both showed that the F1 values in Zoom recordings 
(with default or altered setting) were unreliable. The current dynamic analysis method provides 
a better understanding of the difference than what can be inferred from Zhang et al. (2021) and 
other studies considering static measures.
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For F2 in the combined vowel analysis, only Zoom-default differed significantly from 
H6 in the current study; Zoom-raw’s difference from H6 did not reach statistical significance 
(p = .115), but was also worth noting. This result reflects the findings from Zhang et al. (2021), 
in which the mean F2 values were reported to have a significant difference for Zoom on default 
mode, and had the largest variance in the front vowels /i/, /e/, and /ɛ/. In the current study, 
/iː/ was found to have a contour difference in both Zoom-default and Zoom-raw, and /uː/ was 
different for Zoom-default and Zoom-raw such that both had higher F2 values than the H6 
baseline recordings. These results again help us understand how F2 is captured by different 
recording methods in general, and alert us that even though for Zoom-raw there weren’t any 
statistical differences in the combined vowel analysis, effects are observed for individual vowels, 
which in turn affects the shape of the vowel space overall.

Female and male speech was also found to be affected in different ways from each other, 
with the female vowel space overall being affected to a greater degree by recording method. F1 
values of the high vowels were lower for females in data from the two Zoom methods, but not 
for males, while F1 of /æ/ was affected for males (significantly lower) in the Zoom-raw data but 
not for females. F2 of /uː/ was not found to be affected by the two Zoom-raw in female data, but 
was significantly higher for males. The low accuracy of F1 seems to be related to the unknown 
Zoom algorithms. For instance, in Figure 18, the F2 curves in all three comparison methods 
are much closer to what is shown in the H6 panel than the F1 curves. In Zoom-raw, F1 almost 
disappears from the middle of the vowel, becoming increasingly less clear towards the end, but it 
is slightly better than Zoom-default. This may be related to Zoom’s noise-cancellation algorithm 
in the default setting. Although Zoom-raw keeps the “original sound” as the option suggests, as 
a conferencing application it may still process the audio with complex algorithms, which affects 
F1 more than F2.

Figure 18: Spectrogram for the /ɑ/ vowel in ‘ramen’ produced by PM1.
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Gender-based differences have been reported in other studies, such as Freeman and De 
Decker (2021b), with issues for the female speaker in the range of 750–1500 Hz. We did not 
find that frequencies in a particular range were affected (e.g., F2 of /uː/ was affected for males, 
but not for females, which show similar values in our data; see Figure 17), but our findings do 
suggest that female and male vowels are affected differently by recording method, especially 
online conferencing software options, as was also reported, though not statistically tested, in 
Zhang et al. (2021).

Overall, the results suggest that while the vowel space shape persists in data from all 
recording methods (cf. Freeman & De Decker, 2021a, 2021b), there are significant differences 
in individual vowels, particularly by the two Zoom methods. Crucially, the difference observed 
does not remain consistent over time. In contrast to Freeman and De Decker, who found greatest 
differences for their female participant’s low vowels, this study found that the high vowels were 
most affected. Our results concur in essence with Penney et al. (2021) who showed that for 
voice quality measures, method differences cannot be corrected for by procedures that linearly 
normalize extracted values, as the effect of method is different according to speaker gender and 
the value of the measurement of interest.

5. Conclusions and Recommendations
Through taking a dynamic approach to analysis, this study provides insight into the effects 
of recording methods on speech data for acoustic analysis that could not be offered by single 
time point or mean value analyses. The analyses of contour shape and height make it clear that 
different formant values from the comparison methods are not necessarily due to a consistent 
difference in tracking over the course of a segment, but reflect inaccuracies that differ over time. 
Because of this, we do not recommend the use of Zoom audio (with default, or original sound 
options) to investigate formants. AVR on the other hand, was seen to be more accurate in the 
values recorded for the vowels /iː, æ, uː/, and may be a suitable option for researchers, as it is 
overall more similar to the H6 baseline recordings in contour height and shape. The comparison 
methods did not record utterance intensity accurately, even when overall height differences 
were accounted for by normalizing the values. Therefore, we do not recommend the use of 
these methods for the analysis of intensity and we believe this may also affect amplitude-based 
measures, discussed by Penney et al. (2021). AVR, Zoom-default, and Zoom-raw are all suitable 
for tracking F0 with the analysis of utterances presented in this paper showing consistently 
tracked F0 across recording methods (see Supplementary Material 3 for the analysis of vowels).

With respect to the matched time points analysis, AVR was found to be the most consistently 
aligned with H6 over the course of the full recordings, with the two Zoom methods having 
shorter duration between clap-aligned points over the file. Issues, for example, are observed 
at the first time point, at approximately 25 seconds, and continue linearly over the course of 
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recordings. However, for the annotation of small files (utterance-size, for example, as used in this 
study) durational effects were not observed.

We recommend that, of the methods we tested, researchers record wav files through AVR on 
smartphones as a primary recording method. It may be that this method more generally reflects 
non-lossy recording options on smartphones; we make no claims about other software options, 
but we note their relative success in other studies (e.g., Penney et al., 2022), and the accessibility 
of smartphones to potential participant groups. In this study, we conducted a targeted evaluation 
of the AVR app, as it is accessible on both Android and iOS platforms. Our aim was to provide a 
single, considered recommendation regarding this application (and Zoom options) to researchers 
seeking a straightforward solution. Furthermore, we do not dismiss the validity of using other 
computer-based recording options, especially those that do not present the issues observed 
with online conferencing software. We do recommend that recording sessions are monitored 
using an online conferencing software such as Zoom, Skype, or Teams (Leemann et al., 2020). If 
backup recordings are made using Zoom, it is important to note that when using the Zoom-raw 
settings analyzed here, all speakers must wear headphones to avoid feedback when in a meeting 
with other people speaking. For file transferring, there are a range of free transfer platforms 
including WeTransfer and Send Anywhere. This process can be undertaken at the conclusion of a 
monitored recording session so that the experimenter can confirm their receipt.

This study has given further support for previous research conclusions, such as F0 generally 
being a reliable measure with the dynamics of its movement faithfully captured by the methods 
we tested, and that formants pose difficulties. Further, these difficulties are different for different 
vowels and speakers. With respect to differences, this study has also provided more detail on how 
speech measures are affected by recording method, showing how, depending on the measure 
examined, single time point measures could be non-significantly different (e.g., F1 of /æ/, or 
F2 of /iː/ taken at the midpoint, which are shown in the QGAMMs to overlap with the H6 
baseline measure at this point), but that finding would represent a coincidence, rather than 
reliability of recording method. We draw attention to differences being often nonlinear across 
the measures we examined, and because of that, suggest that when performing analyses that 
compare measures at points across a word or utterance, especially intensity, the results are best 
interpreted with caution.

We present our recommendations graphically in Figure 19. With all factors considered, AVR 
outperformed the two Zoom methods and was the recording method most comparable to the 
baseline H6. We therefore recommend this smartphone application to phonetic researchers for 
remote data collection, as part of a workflow that could include a Zoom meeting to facilitate 
tasks as well as help and monitor participants.
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Figure 19: Recommendations for phonetics research based on results from the current study. 
Tick indicates that we recommend using the method; cross indicates that we do not recommend 
this method; tick with exclamation mark indicates that we consider this method being potentially 
suitable for some studies, but we advise researchers to consider the impact of the discrepancies 
on their specific studies and use it with caution.
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