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Remote recording quality of speech data varies significantly by recording devices, formats, 
and platforms, and past work has asserted that fine-grained sociolinguistic work should not 
be conducted remotely, while broad questions, such as analyses of the relative position of 
phonemes in the vowel space, may be amendable to remote data collection. In this study, lossless 
offline remote recordings taken via smartphone and lossy web-based recording performed over 
Gorilla are compared to traditional laboratory recordings in order to determine how accurately 
the remote options replicate a study of English vowel reduction. Four measures of reduction are 
examined: Relative duration, Euclidean distance, Pillai scores, and normalized formant values 
of stressed and unstressed vowels. Temporal analyses and Pillai scores were unaffected by 
recording method, while Euclidean distance and formant values exhibited some statistically 
significant changes but remained largely in line with laboratory data. These findings indicate 
that remote offline recording via smartphone or Gorilla may hold promise for studying vowel 
reduction and other phenomena requiring a similar degree of precision in formant analysis, but 
researchers should be aware of the specific distortions likely to be incurred with each method, 
with smartphone recordings having a stronger impact than Gorilla on low and back vowels.
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1. Introduction
Remote data collection in speech production research poses multiple challenges to researchers 
in pursuit of high-quality data comparable to that obtained through in-person, laboratory-
based data collection, but the benefits of faster recruitment, access to less commonly studied 
populations, and fewer infrastructural requirements (such as access to a sound-insulated booth) 
make remote recording a desirable objective for many researchers. Before attempting remote 
data collection, researchers should have a good working comprehension of how variation in 
compressive algorithms, hardware and environment, and sampling rates are likely to impact their 
data. The degree of disruption these factors introduce to the study is moderated by the particular 
goals of the study: Sociolinguistic work concerned primarily with small shifts in formant values 
is more likely to be strongly and adversely impacted by transitioning to remote data collection, 
while studies focusing on relative positioning of phonemes in the vowel space may be more 
suitable for remote collection (Freeman & de Decker, 2021b, 2021a). The present study examines 
the impact of remote data collection on an analysis of vowel reduction, an application of formant 
analysis requiring an intermediate degree of precision to the two points of focus of past research. 
By comparing remotely collected data to recordings made in a traditional laboratory setting, it 
attempts to quantify the impact of remote data collection on acoustic analyses of vowel reduction 
under two conditions (online lossy and offline lossless recordings) and with two approaches 
to the formant extraction process (automated formant extraction versus manually supervised 
formant extraction).

Variation in remote recording can be traced in large part to four sources: Background 
noise, variation in hardware, variation in software (i.e., the compression codec), and variation 
in microphone placement. Working together, these factors can exert unequal impacts on the 
resultant dataset (Sanker, Babinski, Burns, Evans, Johns, Kim, Smith, Weber, & Bowern, 2021). 
An emerging body of work has evaluated the impact of these factors as they relate to remote 
data collection, with the majority of its focus placed on variation stemming from hardware 
and software.

1.1. Variation due to device and algorithm in remote recording
In recent years, multiple studies have compared acoustic measurements of simultaneous 
recordings taken on an array of devices. Zhang, Jepson, Lohfink, and Arvaniti (2021) compared 
acoustic measurements of pitch and vowel formants across four recording modalities in a quiet, 
non-laboratory setting: A portable Zoom H6 Handy Recorder, the Zoom web meeting application 
using a built-in laptop microphone, and via smartphone using the built-in microphone on each of 
two different recording apps, Awesome Voice Recorder and Recorder. In a similar study, Sanker 
et al. (2021) compared several acoustic measures taken simultaneously via five devices and a 
sixth high-quality, solid-state device, and Ge, Xiong, and Mok (2021) evaluated simultaneous 
recordings taken across seven devices.
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In Zhang et al. (2021), little variation across device was found for f0, but F1 and F2 were 
significantly affected by device type: The Zoom web application yielded lower F1 and F2 than 
the other recording methods, with the F2 of front vowels most strongly affected. Notably, no 
significant discrepancies in F1 or F2 emerged between the laboratory-style recording equipment 
(the H6 portable recorder) and the two recordings taken via smartphone, indicating that lossless 
smartphone recording in a quiet space may prove a viable approach to remote data collection. 
Similarly, Ge et al. (2021) concluded that f0 was more resilient to cross-device differences, and 
F1 fared better than higher formants. Zoom web recording was again found to introduce various 
distortions. Along similar lines, Sanker et al. (2021) found no difference from control recordings in 
F1 for two of the devices, and one device also exhibited no significant difference in F2. However, 
visible differences were still apparent in plots of vowel by speaker and device – crucially, the 
lack of a statistically significant effect does not equal a lack of difference. Several common 
conclusions emerged. Recordings taken via the Zoom web application introduced significant 
distortions, while some lossless local recording approaches did not differ significantly from 
control recordings taken on a traditional solid-state device. Pitch was more resilient than formant 
frequency to distortion by device or compression algorithm, and F1 was more resilient than F2. 
Because different vowels can be affected unequally and in opposite directions, a statistical effect 
can be absent while the impact on the analysis is severe and chaotic, a conclusion emphasized 
by Sanker et al. (2021). Reducing the impact of recording setup to a single dimension applied 
uniformly across the vowel space is thus ill-advised, and researchers partaking in remote data 
collection must be informed about the recording setup of their participants and its potential 
impacts on the resulting files.

While understanding the impact of device type on recordings is important, conflicting 
results have emerged regarding what type of home recording setup is likely to lead to the least 
distortion. As already discussed, Zhang et al. (2021) suggested that lossless recordings taken on 
a smartphone app introduced the least distortion, while Sanker et al. (2021) obtained the best 
results from a laptop equipped with an external headset microphone, followed closely by an 
Android phone. (The Apple phone performed notably less well with regard to vowel formants.) 
Freeman and De Decker (2021a) concluded that laptops (even utilizing the built-in microphone) 
offered the highest home recording quality. Given this disparity in results, researchers may be 
better advised to focus on the recording method rather than the device itself, as well as to 
thoroughly document the type of device used by each participant.

1.2. Impacts of compression on remote data collection
In addition to the device used to capture a recording, the file format used to record can also 
introduce acoustic distortions. Broadly speaking, audio can be captured in one of two formats. 
Lossy compression codecs limit file size by strategically deleting information; while these 
permanent changes typically do not compromise the comprehensibility of recorded speech, there 
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can be staggering implications for acoustic analysis. Some lossy files undergo changes not only 
to spectral information, but also to temporal information: Sanker et al. (2021) found that the 
alignment of consonant segments was shifted in compressed files recorded via Zoom compared 
to simultaneously-captured uncompressed recordings. By contrast, lossless file formats capture 
the recorded audio in faithful detail, sacrificing file size for full accuracy.

Numerous studies have documented the distortions to the vowel space associated with lossy 
audio recording. De Decker and Nycz (2011) noted a raising of F1 and expansion of F2 associated 
with the conversion from a lossless file format to a lossy .mp3 format. Similarly, Freeman and de 
Decker (2021a, 2021b) found that the 750 – 1500 Hz formant range was particularly susceptible 
to distortion, most strongly affecting the low back vowels, and Calder, Wheeler, Adams, Amarelo, 
Arnold-Murray, Bai, Church, Daniels, Gomez, Henry, Jia, Johnson-Morris, Lee, Miller, Powell, 
Ramsey-Smith, Rayl, Rosenau, and Salvador (2022) also documented a lowering of F1 and raising 
of F2 in a compressed audio format, although they concluded that Lobanov normalization was 
able to correct for these distortions. Gender differences may also correspond to the amount of 
distortion that is introduced, with some studies reporting that the distortion is greater for female 
speakers (see, e.g., Freeman & de Decker, 2021a) and others reporting disparate correlations 
between gender and recording method varying by vowel, recording device, and normalization 
algorithm (Calder et al., 2022).

1.3. Hand measurement
One of the challenges of remote data collection is the potential for increased background 
noise, microphone noise, and other recording-related artifacts that arise more frequently when 
participants record themselves outside the lab environment than when the researcher is able 
to directly control and correct the recording milieu. Thus, remote recording often yields sound 
files with a higher signal-to-noise ratio than typically found in speech production studies. This 
added noise can interfere with accurate detection of formant frequencies and obscure results, 
particularly when formants are measured in an automated fashion (de Decker, 2016). However, 
it may be possible to correct for this issue by implementing a manual formant-extraction protocol 
or, as is done in the present study, by using a human-supervised script to measure formant 
frequencies. One of the objectives of the current study is to determine whether and in what 
fashion the use of an automated or supervised formant extraction script has a detectable impact 
on the conclusions of the analysis.

1.4. Research Question
The goal of the current study is to determine whether either of two remote recording methods 
(lossy recordings taken via Gorilla and lossless recordings taken via smartphone) generate 
sufficient distortion to formant frequencies to shift the conclusions of an analysis of vowel 
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reduction. To achieve this goal, a replication of an earlier study of vowel reduction completed 
in person in a laboratory setting (manuscript in preparation) was carried out using two 
simultaneously-recorded remote data collection procedures. A secondary goal was to determine 
the extent of improvement to data quality that could be attributed to replacing an automatic 
formant extraction script with one that required approval by the researcher of each data point 
based on a visual presentation of the formant tracker and reading. Results were analyzed using 
four measures of vowel reduction: Comparison of stressed and unstressed F1 and F2 values and 
visual inspection of a vowel plot, Euclidean distance, Pillai scores, and duration ratio of stressed 
and unstressed vowels.

2. Methods
2.1. Participants
Twenty monolingual speakers of American English participated in the study; ten completed the 
task in person in a laboratory setting (2M, 8F; M = 20.9 y.o., SD = 1.96, range = 19 – 26), 
and ten completed it fully remotely (6M, 4F; M = 35.6 y.o., SD = 10.65, range = 21 – 60). 
Participants were born and resided in the Midwestern region of the United States at the time of 
recording; 19 of the 20 reported only limited exposure to other languages. One speaker reported 
basic proficiency in Tamil, spoken as a heritage language, but described their proficiency as 
primarily receptive, with spoken abilities limited to domestic topics. Data was collected from 
in-person and remote participants separately as a result of the COVID-19 pandemic; in-person 
data also served as a control group for a separate study of vowel reduction in Spanish-English 
bilinguals (in preparation). The remote group was recruited via Prolific (www.prolific.com) 
and completed the task through Gorilla Experiment Builder (Anwyl-Irvine, Massonnié, Flitton, 
Kirkham, & Evershed, 2020), while the in-person group was recruited on the campus of a major 
Midwestern research university and recorded in a sound-insulated booth.

2.2. Stimuli
Participants completed a repetition task in which they heard and repeated English sentences 
of the general form “the word X means…”. A full list of the sentences is given in Supplemental 
Materials, Appendix 1: Each contained a single target word with one of five vowels /ɑ, æ, ɛ, ɪ, 
ʌ/, followed by a predicate defining the target word of approximately the same length, rhythm, 
and difficulty (i.e., “the word rabbit means a small fuzzy animal”). These vowels were selected to 
flesh out the periphery of the vowel space as fully as possible using monophthongal vowels that 
undergo reduction; no high back vowels were included because of the difficulty of finding target 
words with reduced vowels that could reasonably be assumed to contain an underlying high 
back vowel. Target words placed the vowel in question in either stressed or unstressed position; 
all stressed vowels occurred in monosyllables, while unstressed vowels appeared in the second 

https://www.prolific.com/
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syllable of a disyllable. Monosyllables and disyllables were matched for the segmental content 
surrounding the target vowel – for example, “bit” ~ “rabbit”. Each vowel was represented by six 
monosyllables and six disyllables for a total of 60 target words.

Stimuli were recorded by a male native speaker of Midwestern American English (28 y.o. 
at the time of recording) in a sound-insulated booth using a Shure KSM32 cardioid condenser 
microphone and a TubeMP preamp connected to a PC, and digitized at 44.1 kHz. The intensity 
of the recordings was normalized to 70 dB via Praat script (Winn, 2013).

2.3. Procedure and recording equipment
Participants completed a shadowing task in which they heard and repeated target sentences 
for a microphone. The 60 target sentences were repeated twice and randomized for a total of 
120 intended utterances per participant. Participants were instructed to repeat the sentence 
they heard, speaking as naturally as possible. Visual indicators cued participants when it was 
time to speak, with a red screen and image of an ear indicating “listen” and a green screen and 
image of a microphone indicating “speak”. A delay of 0.5 seconds was added after the recorded 
stimulus before the “speak” cues appeared. Together, the delay before speaking and the longer 
and variable carrier phrases were intended to encourage speakers not to reproduce the prosody 
or other subphonemic details of the recorded prompt, in line with work that has shown that 
when a sentence exceeds working memory capacity, it must be parsed in order to be repeated 
successfully (Tracy-Ventura, McManus, Norris, & Ortega, 2014). The recording window ended 
after five seconds, unless the participant advanced to the next trial manually before the full five 
seconds elapsed. After each block of 30 sentences, participants were offered a short break.

Those in the in-person group completed the study in a sound-insulated booth using Sennheiser 
HD 380 Pro headphones, with stimulus presentation managed via PsychoPy (Peirce, Gray, 
Simpson, MacAskill, Höchenberger, Sogo, Kastman, & Lindeløv, 2019). A Shure KSM32 cardioid 
condenser microphone connected to a TubeMP preamp was used to record their productions in 
Audacity, and recordings were digitized at 44.1 kHz.

Remote participants completed the task once, but produced two simultaneous recordings 
obtained via distinct methods to allow for comparison of online and offline remote recording 
approaches. They were instructed to complete the task in a quiet room and to wear headphones 
during the study, but natural variation in background noise occurred across participants and over 
the course of the study. Headphone compliance was ensured via a simple headphone check task 
utilizing antiphase tones, as described in Woods, Siegel, Traer, and McDermott (2017). Stimulus 
presentation and online recording was managed via Gorilla Experiment Builder (Anwyl-Irvine 
et al., 2020) on a laptop or desktop computer. The Gorilla recordings made use of Gorilla’s 
Audio Recording Zone to capture .weba files, a lossy file format that relies on the OGG Vorbis 
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compression codec (What Is a WEBA File?, n.d.). The Gorilla recordings utilized either a built-in 
or external microphone; models varied across participants. According to self-report, three 
participants used a microphone built into a headset, two used an external cardioid condenser 
microphone, two used microphones built into earbuds, one used a built-in laptop microphone, one 
used an external microphone of unknown type, and one did not report microphone information. 
Exact models are reported in the Supplemental Materials, Appendix 2. One participant appeared 
to suffer a microphone error, as all of their Gorilla files were empty; thus, the Gorilla group 
consisted of only nine participants in the final analysis.

In addition to the online .weba recordings captured via Gorilla, remote participants 
simultaneously recorded their productions offline in a lossless .wav file recorded using a 
smartphone. For this recording, participants were directed to download a freely-available audio 
recording app (Hokusai Audio Editor for Apple users and ASR Voice Recorder for Android 
owners). They were instructed to adjust the app settings to an acceptable quality (a 128-kbps 
bitrate for Android users and a 16-bit setting for Apple owners, with a 44.1 kHz sampling rate for 
both) and to position the smartphone and any freestanding external microphone six to ten inches 
from their mouth in a stable position. The .wav file was sent to the researcher upon completion 
of the task.

2.4. Analysis
Target vowels were annotated by hand in both the uploaded smartphone .wav files and Gorilla 
.weba recordings. To mark boundaries between voiceless consonants and vowels, the onset of 
periodicity was used as the primary cue to determine the location of the boundary. Where voiced 
consonants were concerned, increases in intensity and complexity of waveform were used to 
determine the boundary between consonant and vowel. Where no clear boundary existed, only 
the steady-state portion of the vowel was annotated, and the item was excluded from analyses of 
duration. (This group included all utterances of ‘carrot’ and ‘rot’ and many instances of ‘lot’ and 
‘pilot’.) Formant frequencies at vowel midpoint and duration of vowels were extracted twice: Once 
using a Praat script that automatically extracted formant values, and a second time using a Praat 
script that required manual review of each item (Scarborough, 2005), allowing the researcher 
to visually confirm that the formants extracted matched the visible formant on the spectrogram. 
When the formant tracker was visibly distorted, a manual reading was taken by using the FFT-
based ‘Get Formants…’ function or by placing the cursor manually in the center of the visible 
formant. Both scripts relied on Praat’s Burg LPC-based algorithm for formant extraction. Since 
the study focused on how recording quality impacted analysis and low-quality recordings were 
an expected aspect of the study design, it was expected that manual review could be critical to 
ensuring accurate formant readings. Finally, formant frequencies were normalized using log-
additive regression normalization (Barreda & Nearey, 2018).
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To construct a well-rounded picture of the results, a variety of approaches to quantifying 
vowel reduction are presented: §3 considers raw formant values, relative position in the vowel 
space, Euclidean distance, Pillai scores, and duration ratio of reduced and unreduced items. For 
each measure, a linear mixed-effects model was fit using lme4 (Bates, Mächler, Bolker, & Walker, 
2015) in R (R Core Team, 2020), including some combination of the factors Extraction Method 
(Automatic vs. Supervised), Recording Method (In Person, Gorilla, or Smartphone), and Vowel 
(five levels: /ɑ, æ, ɛ, ɪ, ʌ/), according to which combination yielded the best model fit. Model fit 
was assessed by comparing nested models using a likelihood ratio test (LRT) and comparing non-
nested models using the Akaike Information Criterion (AIC). The models for raw formant values 
also included a factor Stress (Stressed vs. Unstressed); the others did not include this factor 
because the difference in stress was worked into the dependent measure for Euclidean distance, 
Pillai score, and duration ratio.

3. Results
3.1. Vowel position
To fully convey the spectral effects of reduction on vowel position under the various conditions 
of interest, this section presents the changes enacted to F1, F2, and overall position in the F1xF2 
space across recording conditions and extraction methods.

3.1.1. Effect on F1
Figure 1 displays the F1 range of each vowel in stressed and unstressed position across the six 
conditions of extraction method and recording method. As expected, all vowels except /ɪ/ visibly 
raised when unstressed (with /ɪ/ an exception due to its initial position resting quite high in the 
vowel space).

A linear mixed-effects model with a dependent variable of Normalized F1 was fit using lme4 
(Bates et al., 2015). The best-fitting model, determined through comparison of nested models 
using LRT tests and comparison of non-nested models by AIC, contained four independent 
terms – Extraction Method (Automatic vs. Supervised), Recording Method (In Person, Gorilla, 
or Smartphone), Vowel (five levels: /ɑ, æ, ɛ, ɪ, ʌ/), and Stress (Stressed or Unstressed) – as well 
as the interactions Extraction Method by Recording Method, Recording Method by Vowel by 
Stress, Recording Method by Vowel, Vowel by Stress, and Recording Method by Stress. It also 
included random intercepts for Subject and Item and a random slope for Subject in relation 
to Vowel. This model showed no significant difference between the Automatic and Supervised 
extraction methods (β = –.001, SE = .004, t = –.261, p = 0.794), although a difference did 
emerge for Recording Method when comparing the Smartphone and In Person recordings (β = 
–.080, SE = .017, t = –4.752, p < .001). (The Smartphone recordings yielded a lower average 
F1, corresponding to a more closed vowel on average.) To better understand the complexities of 
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the data, pairwise comparisons (post-hoc t-tests with Bonferroni correction) were run comparing 
each vowel across recording conditions, holding fixed the levels of Extraction Method and Stress. 
Results of pairwise comparisons are provided in Table 1. (The full output of the omnibus model 
is given in Supplemental Materials, Appendix 3.) As can be observed in Table 1, relatively few 
deviations from the in-person recordings appeared, with only unstressed /ɪ/ differing significantly 
between the in-person and Gorilla recordings (higher in Gorilla than in person), and only stressed 
/ɑ/ and /ʌ/ differing in the smartphone recordings (both lower in the smartphone recordings 
than the in-person ones). Interestingly, a greater number of deviations appeared between the two 
remote recording methods, which analyzed data recorded simultaneously from different devices, 
than between the data obtained through either of the remote methods and the in-person data, 
which was recorded by different speakers in a laboratory setting.

Gorilla vs. 
In Person

Smartphone vs. 
In Person

Smartphone vs. 
Gorilla

Automatic /ɑ/ Stressed –0.0142 –0.0822 *** –0.068 ***

Automatic /æ/ Stressed –0.0308 –0.0891 –0.0583

Automatic /ɛ/ Stressed 0.0235 –0.00293 –0.0264

Automatic /ɪ/ Stressed 0.0281 –0.0169 –0.045 **

Automatic /ʌ/ Stressed –0.00863 –0.0764 *** –0.0678 ***

Automatic /ɑ/ Unstressed 0.0332 –0.0178 –0.051

Automatic /æ/ Unstressed 0.0205 –0.0291 –0.0496

Automatic /ɛ/ Unstressed 0.0662 0.0108 –0.0554

Automatic /ɪ/ Unstressed 0.0556 *** –0.0141 –0.0697 ***

Automatic /ʌ/ Unstressed 0.0423 –0.00558 –0.0479

Supervised /ɑ/ Stressed –0.0223 –0.0578 *** –0.0355

Supervised /æ/ Stressed –0.0351 –0.0648 –0.0297

Supervised /ɛ/ Stressed 0.0247 0.00882 –0.0159

Supervised /ɪ/ Stressed 0.0363 –0.00909 –0.0454 **

Supervised /ʌ/ Stressed –0.0144 –0.0419 *** –0.0276

Supervised /ɑ/ Unstressed 0.0348 0.00729 –0.0275

(Contd.)
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Gorilla vs. 
In Person

Smartphone vs. 
In Person

Smartphone vs. 
Gorilla

Supervised /æ/ Unstressed 0.0246 –0.0149 –0.0395

Supervised /ɛ/ Unstressed 0.0731 0.0174 –0.0558

Supervised /ɪ/ Unstressed 0.0633 *** –0.00386 –0.0672 ***

Supervised /ʌ/ Unstressed 0.0492 0.0279 –0.0214

Table 1: Pairwise comparisons for F1. The first column indicates the difference in means 
between the two groups listed. The second column indicates the significance of the p-value of a 
Bonferroni-corrected t-test between the two groups. Alpha level is set for 0.0025 due to the use 
of multiple tests – values above this are reported as NS. ** indicates p<0.0025 and *** indicates 
p<0.001. Blank cells indicate a non-significant result.

Figure 1: Changes to F1 by Vowel, Stress, Extraction Method, and Recording Method.



11Conklin: Examining Recording Quality from Two Methods of Remote Data Collection in a Study of Vowel Reduction

Some of this variation – such as the wider range of unstressed /æ/ in the Gorilla and 
Smartphone recordings – may be due to interspeaker differences, as the in-person recordings 
were, due to logistical constraints and the desire to run a true replication study remotely rather 
than a direct comparison, gathered from a separate set of participants. Other variations, such 
as the elevated F1 in Gorilla for both stressed and unstressed /ɪ/ relative to the smartphone 
recordings, cannot be ascribed to between-speaker variation and thus must be attributed to 
differences in hardware and compression algorithm.

3.3.2. Effect on F2
Figure 2 visualizes the F2 range of each vowel in stressed and unstressed position across the six 
conditions of extraction method and recording method. As was done for F1, to analyze F2, a linear 
mixed-effects model with a dependent variable of Normalized F2 was fit using lme4 (Bates et al., 
2015). The best-fitting model contained four fully-crossed independent terms: Extraction Method 
(Automatic vs. Supervised), Recording Method (In Person, Gorilla, or Smartphone), Vowel (five 
levels: /ɑ, æ, ɛ, ɪ, ʌ/), and Stress (Stressed or Unstressed), and all possible interactions among 
these four, as well as random intercepts for Subject and Item and a random slope for Subject 
in relation to Vowel. The model showed no significant difference between the Automatic and 
Supervised extraction methods (β = .004, SE = .013, t = .285, p = .776), although a difference 
did emerge for Recording Method when comparing the Gorilla and in-person recordings (β = 
.057, SE = .025, t = 2.293, p < .05). (The Gorilla recordings yielded a lower average F2, 
corresponding to a more back vowel quality on average.) The full output of the model is given in 
Supplemental Materials, Appendix 3.

To better convey the nuances of the differences across recording methods, post-hoc t-tests 
with Bonferroni correction were used to compare each vowel across recording methods, with 
the levels of stress and extraction method held constant. The results are displayed in Table 2: 
As can be seen, only stressed /ɑ/ differed from the in-person data in the Gorilla recordings 
(with a higher F2 obtained via Gorilla), while both stressed /ɑ/ and stressed /æ/ differed from 
the control group in the smartphone recordings, but only when measured with the supervised 
script, with both exhibiting a higher F2 in the smartphone recording than the control data. Two 
differences also emerged between the smartphone and Gorilla recordings, affecting unstressed 
/ɛ/ and /ɪ/ when measured automatically and manually, respectively.

3.3.3. Overall vowel position
To provide a more visually intuitive view of the changes to formant values due to reduction 
across conditions, Figure 3 provides a vowel plot for each of the six conditions. As can be seen, 
differences between the Automatic and Supervised extraction method plots for the Gorilla and 
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Gorilla vs. In 
Person

Smartphone vs. 
In Person

Smartphone 
vs. Gorilla

Automatic /ɑ/ Stressed 0.0597 *** 0.0255 –0.0341

Automatic /æ/ Stressed 0.0551 0.0488 –0.00629

Automatic /ɛ/ Stressed –0.0266 –0.0126 0.0139

Automatic /ɪ/ Stressed –0.0054 –0.0239 –0.0185

Automatic /ʌ/ Stressed –0.018 –0.0495 –0.0315

Automatic /ɑ/ Unstressed –0.0456 –0.0414 0.00422

Automatic /æ/ Unstressed –0.0509 –0.0108 0.0401

Automatic /ɛ/ Unstressed –0.0463 0.00907 0.0554 **

Automatic /ɪ/ Unstressed –0.033 –0.0194 0.0136

Automatic /ʌ/ Unstressed –0.0185 –0.0398 –0.0214

Supervised /ɑ/ Stressed 0.0583 *** 0.051 *** –0.00724

Supervised /æ/ Stressed 0.0597 0.0889 *** 0.0293

Supervised /ɛ/ Stressed –0.0185 0.00282 0.0213

Supervised /ɪ/ Stressed 0.01 0.0146 0.0046

Supervised /ʌ/ Stressed –0.02 –0.00324 0.0168

Supervised /ɑ/ Unstressed –0.0215 0.0131 0.0346

Supervised /æ/ Unstressed –0.0103 0.0139 0.0242

Supervised /ɛ/ Unstressed –0.0171 0.0164 0.0336

Supervised /ɪ/ Unstressed –0.00639 0.0245 0.0309 **

Supervised /ʌ/ Unstressed –0.0036 0.0141 0.0177

Table 2: Pairwise comparisons for F2. The first column indicates the difference in means 
between the two groups listed. The second column indicates the significance of the p-value of a 
Bonferroni-corrected t-test between the two groups. Alpha level is set for 0.0025 due to the use 
of multiple tests – values above this are reported as NS. ** indicates p<0.0025 and *** indicates 
p<0.001. Blank cells indicate a non-significant result.
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In Person data are minimal; in the Smartphone data, some differences are visible, with the 
Supervised formant script generating less variation in stressed /ɑ/, greater variation in F2 and 
less variation in F1 for stressed /ʌ/, and less variation in stressed /ɪ/ compared to the Automatic 
script, as well as a tighter grouping of means for stressed and unstressed /ɪ/ in the Supervised 
condition. Comparison to the other recording conditions suggests that the data obtained from the 
Supervised script for the Smartphone condition is most similar to the data found in the Gorilla 
and In Person recordings from either script, and thus may be more accurate overall.

Figure 2: Changes to F2 by Vowel, Stress, Extraction Method, and Recording Method.
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3.2. Euclidean distance
To create a singular metric conveying the degree of spectral displacement in the F1xF2 space 
that could be attributed to vowel reduction, the Euclidean Distance (EuD) between each 
stressed vowel and its unstressed counterpart was calculated for each speaker and word pair. 
EuD is a straightforward calculation of the hypotenuse of the triangle created by measuring 
the distance between two points in the F1 and F2 dimensions. The first stressed and unstressed 
productions of each word were paired together, and the second stressed and unstressed 

Figure 3: Vowel plot by extraction method, recording method, vowel, and stress. Ellipses show 
approximately one standard deviation around the mean (67% confidence interval).
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productions were paired together (i.e., for a given speaker, the first utterance of ‘rabbit’ and 
the first utterance of ‘bit’ contributed to the calcuation of a single EuD measurement). If 
either member of a pair was missing, no EuD value was computed for that speaker, pair, and 
repetition. A total of 3342 EuD values were calculated from the 6813 recorded vowels whose 
formant values were included in the analysis in §3, indicating a rate of about 1.9% data loss 
due to missing values within pairs.

Figure 4 displays the Euclidean distance of each vowel when recorded in person, using 
Gorilla, or using a smartphone, as well as when the formant values were extracted using 
the automatic or supervised scripts. To determine which of these factors had a significant 
impact on the EuD values, a linear mixed model with a dependent variable EuD, independent 
variables for Vowel (five levels: /ɑ, æ, ɛ, ɪ, ʌ/), Recording Method (Gorilla, Smartphone, or 
In Person), and Extraction Method (Automatic or Supervised), an interaction term for Vowel 
By Recording Method, and random intercepts for Item and Subject was fit using lme4 (Bates 
et al., 2015). (Models using other combinations of factors were considered, and this model 
was selected as the best fit based on comparison of nested models through LRT tests.) The 
full output of the model is reported in Supplemental Materials, Appendix 3. Importantly, the 
greatest differences in Euclidean Distance were a result of vowel quality, with the highest 
vowel /ɪ/ undergoing the least displacement in the F1xF2 space as a result of reduction, and 
the low vowels /ɑ/ and /æ/ undergoing the greatest. Significant differences in overall EuD 
across vowels also emerged for the Gorilla recordings in comparison to the In Person data (β 
= –.088, SE = .029, t = –2.80, p < 0.01), as well as between the Automatic and Supervised 
formant extraction methods (β = –.009, SE = .005, t = –2.080, p < 0.05). No difference 
emerged between the Smartphone and In Person recordings (β = –.047, SE = .029, t = –1.607,  
p = 0.121).

Pairwise comparisons with Bonferroni correction of each vowel across recording 
methods and extraction methods revealed no significant differences, even though some 
minor differences in the degree of difference between vowels across recording conditions 
emerge in the Vowel by Recording Condition interaction captured in Lines 9 – 16 of Table 3, 
Appendix 3. Where significant, these represent minor adjustments to the degree of change in 
the difference in EuD between the reference vowel /ɑ/ and the vowel in question between 
the reference recording condition (In Person) and the recording condition cited in that line. 
Thus, although statistically significant, they do not offer substantive insight into the central 
question of this study: Do the main conclusions of a vowel reduction analysis vary across 
extraction methods or recording conditions? With regard to EuD, the most salient takeaway 
is that automatically extracted formants yielded a greater EuD than formants extracted with 
the supervised script, while recordings taken via Gorilla yielded a slightly smaller EuD than 
those taken in person.
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3.3. Pillai scores
While Euclidean distance and raw formant values provide important information about spectral 
reduction, neither delivers a complete picture of all the effects of reduction. Raw formant values 
are difficult to interpret, and they split the acoustic space into two dimensions that, while 
well-grounded in the physical production of vowels, do not intuitively capture the centralizing 
movement of the tongue that occurs in reduction. By contrast, EuD collapses the artificially 
divided F1 and F2 dimensions into a single vector but fails to represent the direction of the vector 
or its extent relative to either the stressed or unstressed vowel as a baseline. To overcome these 
limitations, this section reports the results of an analysis of Pillai scores for each stressed vowel 
and its unstressed counterpart.

Pillai scores provide a measure of overlap between the distributions of two vowels; the score 
ranges from 0 to 1, with 0 indicating the highest possible degree of overlap and 1 indicating 
no overlap (Hay, Warren, & Drager, 2006; Nycz & Hall-Lew, 2013). In this analysis, the degree 
of overlap between all stressed tokens of a vowel and all unstressed tokens of the same vowel 
was calculated for each speaker in each of the six conditions (Automatic or Supervised formant 
extraction and In Person, Gorilla, or Smartphone recordings). The Pillai scores are visualized 

Figure 4: Euclidean distance of stressed and unstressed English vowels by recording condition 
and extraction method.
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in Figure 5 and were analyzed using a linear mixed model. The best-fitting model contained 
independent factors for Vowel (five levels: /ɑ, æ, ɛ, ɪ, ʌ/) Recording Method (Gorilla, In Person, 
or Smartphone), and their interaction, as well as a random intercept for Subject and a random 
slope for Subject in relation to Vowel; the output of this model is given in Table 3. As Extraction 
Method did not improve the fit of the model, we can conclude that the use of the automated 
formant extraction script compared to the supervised script did not materially affect the degree 
of overlap between reduced and unreduced vowels. Furthermore, there were clear differences 
between vowels; /ɑ/ and /ʌ/ showed the least degree of overlap, which makes sense as these 
vowels underwent the greatest degree of raising, as discussed in §3.1.1. The high vowel /ɪ/ showed 
the greatest degree of overlap, which was again unsurprising considering its representation in 
Figure 3, while /æ/ and /ɛ/ hovered in the middle of the Pillai score range, indicating some 
overlap. Vowels with more overlap overall also exhibited greater variation across speakers, as 
judged by the size of the quartiles in Figure 5, suggesting that some speakers maintained a 
stronger distinction between stressed and unstressed /ɪ/ (for example) than others did. Finally, 
although Recording Method improved the fit of the model, no significant effect of Recording 
Method emerged, suggesting that the degree of overlap for the dataset on the whole was stable 
regardless of recording method. Pairwise comparisons with Bonferroni correction of each vowel 
across recording methods and extraction methods confirmed this conclusion, revealing no 
significant differences.

Figure 5: Range of Pillai scores across speakers for extraction and recording method, calculated 
by comparing each stressed vowel and its unstressed counterpart.
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3.4. Duration ratio
To create a single measure incorporating the duration values of paired stressed and unstressed 
vowels, the Duration Ratio was computed as the quotient of Unstressed Duration/Stressed 
Duration. This approach yields a measure where a value of 1 indicates no reduction for a pair of 
utterances, values greater than 1 indicate that the unstressed vowel was longer than the stressed 

Term Estimate Standard 
Error

t Statistic p

1 (Intercept) 0.680 0.021 32.378 ***

2 Vowel /æ/ –0.206 0.047 –4.333 ***

3 Vowel /ɛ/ –0.145 0.057 –2.539 *

4 Vowel /ɪ/ –0.325 0.081 –3.990 ***

5 Vowel /ʌ/ –0.019 0.034 –0.574

6 Recording Method Gorilla –0.009 0.030 –0.309

7 Recording Method Smartphone –0.043 0.030 –1.448

8 Vowel /æ/ * Recording Method Gorilla 0.023 0.068 0.334

9 Vowel /ɛ/ * Recording Method Gorilla –0.120 0.081 –1.472

10 Vowel /ɪ/ * Recording Method Gorilla 0.077 0.115 0.666

11 Vowel /ʌ/ * Recording Method Gorilla 0.003 0.048 0.067

12 Vowel /æ/ * Recording Method 
 Smartphone

–0.002 0.067 –0.028

13 Vowel /ɛ/ * Recording Method 
 Smartphone

–0.071 0.081 –0.872

14 Vowel /ɪ/ * Recording Method 
 Smartphone

0.018 0.115 0.160

15 Vowel /ʌ/ * Recording Method 
 Smartphone

–0.059 0.048 –1.240

Table 3: Output of linear mixed model evaluating Pillai scores calculating overlap between 
stressed vowels and their unstressed counterparts. The reference category for Vowel is /ɑ/ and 
for Recording Method is In Person. * indicates p<0.05, ** p<0.01, and *** p<0.001. Blank 
cells in the rightmost column indicate a non-significant result.
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vowel, and values less than 1 denote temporal reduction – the smaller the value, the greater the 
reduction. Figure 6 displays the mean duration ratio for each Vowel, Extraction Method, and 
Recording Method; to analyze the results, a linear mixed model was fit. The best-fitting model 
contained an independent variable for Vowel (five levels: /ɑ, æ, ɛ, ɪ, ʌ/), Recording Method 
(Gorilla, Smartphone, or In Person), and their interaction, as well as random intercepts for 
Subject and Item and a random slope for Subject in relation to Vowel; output is given in Table 4. 
The lack of a significant effect for Vowel, Extraction Method, or Recording Method indicates that 
major differences in temporal reduction were not present.

This conclusion is not unexpected – if, indeed, changes were found to be due to extraction 
method, some error in the analytical process would have to be expected, since both scripts extracted 
duration in an identical fashion from identically annotated, simultaneous recordings. That no 
differences emerged due to recording method is a reflection of a consistent annotation style if we 
consider the Gorilla and Smartphone recordings, which annotated the same utterances recorded 
with different devices and filetypes. While the difference between lossy online .weba recording 
and lossless offline .wav recording may be expected to produce some spectral distortion, it should 
not effect change to the temporal dimension. Furthermore, the lack of difference between the In 
Person recordings and the Gorilla/Smartphone recordings suggests that the sampling techniques 
and sample size in the study were sufficient to disguise any interspeaker variation or random 
variation ascribable to individual utterances.

Figure 6: Duration ratio of paired vowels (Unstressed/Stressed) by extraction method and 
recording method.
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Term Estimate Standard 
Error

t Statistic p

1 (Intercept) 0.522547 0.104845 4.984 ***

2 Vowel /æ/ 0.030123 0.13431 0.224

3 Vowel /ɛ/ 0.219348 0.134293 1.633

4 Vowel /ɪ/ 0.179581 0.135675 1.324

5 Vowel /ʌ/ 0.150429 0.135264 1.112

6 Recording Method Gorilla –0.026323 0.030269 –0.87

7 Recording Method Smartphone –0.014251 0.029937 –0.476

8 Vowel /æ/ * Recording Method 
Gorilla

0.000339 0.031002 0.011

9 Vowel /ɛ/ * Recording Method 
Gorilla

0.057895 0.030772 1.881

10 Vowel /ɪ/ * Recording Method 
Gorilla

–0.001007 0.041192 –0.024

11 Vowel /ʌ/ * Recording Method 
Gorilla

0.02857 0.038445 0.743

12 Vowel /æ/ * Recording Method 
Smartphone

–0.00633 0.030535 –0.207

13 Vowel /ɛ/ * Recording Method 
Smartphone

0.056972 0.030273 1.882

14 Vowel /ɪ/ * Recording Method 
Smartphone

0.017694 0.040782 0.434

15 Vowel /ʌ/ * Recording Method 
Smartphone

0.039408 0.037948 1.038

Table 4: Output of linear mixed model evaluating Duration Ratio (Unstressed/Stressed) 
between stressed vowels and their unstressed counterparts. The reference category for Vowel 
is /ɑ/, for Recording Method is In Person, and for Extraction Method is Automatic. * indicates 
p < 0.05, ** p < 0.01, and *** p < 0.001. Blank cells in the rightmost column indicate a non-
significant result.
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3.5. Summary of results
This study relied on a range of metrics to evaluate differences in vowel reduction across two 

remote recording methods and two formant extraction methods.

When examining F1 directly, recordings taken via smartphone had a slightly lower average 
F1 than the in-person recordings. For data taken via Gorilla, F1 was slightly higher for unstressed 
/ɪ/ than in the control data, while smartphone recordings slightly lowered F1 in low back vowels. 
For F2, the Gorilla recordings had a slightly (and statistically significantly) higher mean F2. 
Both remote recordings raised the F2 of /ɑ/ relative to the control, while smartphone recordings 
also raised the F2 of /æ/. However, the relative position in the vowel space, averaged across 
speakers, was quite stable across conditions, with the single exception of the smartphone 
recordings analyzed with the automated formant extraction script. The smartphone recordings 
analyzed with the supervised script strongly reflected the Gorilla and In Person recordings when 
considered in the aggregate.

When it came to Euclidean distance (EuD), some statistically significant differences emerged 
beyond the expected. Vowel quality, naturally, had a strong impact on EuD. Additionally, the 
data extracted via the Automatic script had a greater EuD than that taken from the Supervised 
script, and the Gorilla recordings had a smaller EuD overall than the in-person recordings. Here 
again, the two lowest vowels underwent the greatest change across conditions.

For Pillai scores, only vowel quality predicted differences across categories; there was no 
significant effect of recording method or extraction method, suggesting that the degree of overlap 
was fairly stable across methodologies. Visual inspection of the data did suggest a wider spread 
of Pillai scores across participants in the smartphone recordings for the vowel /v/ under the 
Automatic extraction method.

Finally, Duration Ratio showed no significant differences due to recording method or 
extraction method, suggesting that temporal reduction was unaffected by these changes in data 
collection techniques.

4. General discussion
The core question of this study was whether the use of remote data collection for speech 
production would impact the conclusions of an acoustic analysis of vowel reduction. Two 
remote data collection methods, lossy online recording via Gorilla and lossless offline recording 
via a smartphone app, were compared to data collected in person in a traditional laboratory 
setting and subjected to a range of statistical analyses. Both remote recording methods diverged 
from the control data in statistically significant ways, but the differences were not identical 
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across methods. The smartphone recordings aligned best with the control data when looked at 
through the lens of Euclidean distance, while the Gorilla recordings exhibited fewer changes 
to normalized F1 and F2 values. Especially notable when considering the F1 and F2 values 
were the clustering of significant differences in the low and back vowels when comparing the 
smartphone data to the control group, an area of the vowel space identified in previous work 
as particularly susceptible to distortion due to recording and audio compression techniques. 
No differences attributed to recording method emerged when using Pillai scores to parametrize 
vowel reduction, and apparent vowel position, evaluated visually, was also relatively consistent. 
Thus, the form of remote recording most appropriate to a given study should be evaluated in line 
with the vowels of interest and intended analysis, as some approaches to vowel reduction were 
more resilient than others to differences in recording method, and no single remote recording 
method yielded results identical to the control data under all analytical approaches.

Testing the impact of formant extraction using an automatic Praat script compared to one 
visually confirmed by a researcher is an important contribution of the present study. Especially 
when using recordings likely to be affected by background noise, high SNR, and potentially 
poor recording quality, it is reasonable to expect that the manually corrected formant extraction 
procedure may yield higher-quality data. Interestingly, the degree of impact of the two formant 
extraction procedures differed by analysis and recording method: Overall vowel position was 
notably impacted by extraction method in the smartphone recordings, with the supervised 
data falling more closely in line with the control data, while little impact was observed on the 
Gorilla data from extraction method. Euclidean distance was also affected by extraction method, 
while Pillai scores were resilient to the slight differences introduced by manual correction of the 
data. These findings suggest that while the supervised formant extraction script did introduce 
improvements to data quality, it was primarily in the smartphone recordings that those 
improvements had a material impact on the conclusions of the analysis.

One finding that emerged repeatedly in earlier work on distortions likely in remote data 
collection due to hardware and software differences was that the lower back quadrant of the 
vowel space is especially susceptible to distortion (Freeman & de Decker, 2021a, 2021b). This 
finding is repeated in the present study, but in an unexpected fashion: The lossless smartphone 
recordings distorted this portion of the vowel space more strongly than the lossy Gorilla 
recordings. While the distortion is surprising when considering only the compression codec used 
in each condition, it is important to remember that file format and microphone type are not the 
only factors implicit in the choice between a lossy Gorilla recording and a lossless smartphone 
recording. Modern smartphones typically perform noise cancellation on all incoming sound, both 
calls and recordings, using sound localization from multiple built-in microphones to detect and 
correct for background noise (Thorn, 2014).1 Future research should consider whether the noise 

 1 Thanks are due to Ashley Kentner for this astute observation.
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cancellation software included in most smartphones could be responsible for some or all of the 
distortions detected in the lossless recordings.

4.1. Clarifying the intended goal of the current study
Two aspects of this study that may be considered weaknesses from one perspective are (1) the 
use of different speaker groups for the in-person and remote data and (2) the conflation of 
recording method and recording environment that occurred due to remote data collection being 
truly remote, rather than a simulacrum of remote recording techniques conducted in a laboratory 
as often seen in previous work. If the goal of this study were to evaluate the efficacy of remote 
recording setups without interference from outside forces (background noise, microphone 
position, etc.), these would be weaknesses indeed. However, viewed as a remote replication of an 
original in-person study, whose purpose is to advise researchers of the challenges and degree of 
variation they may expect to encounter when working with remotely-collected data beyond the 
already well-documented differences of device type and file format, these apparent weaknesses 
should more rightly be considered strengths. The differentiation of speaker groups fulfills the 
purpose it would in any replication study, ensuring that data collected at different times and 
under different circumstances nonetheless reinforces the generalized conclusions of the original 
study. Furthermore, the variation due to background noise, differing hardware, microphone 
placement, etc., reflects the real variation that future fully-remote studies can expect, which 
is in line with the goal of the study. Well-controlled, laboratory-based studies of the recording 
equipment and compression codecs likely to be used for remote data collection have been carried 
out repeatedly, as discussed in §1.1 and §1.2. The original contribution of this study is not to 
review how well Gorilla and smartphone recording perform under laboratory conditions, but 
to account for the degree of variation that can be expected under real-world remote recording 
conditions. Without the additional variation encountered from the sources mentioned earlier, 
achieving this goal would be impossible.

4.2. Consistency with previous results
Past work on this topic has offered conflicting recommendations for what style of easily-accessible 
home recording equipment may yield the best results for speech production studies. For instance, 
Zhang et al. (2021) recommended lossless smartphone recordings as the best alternative to 
in-person laboratory recording, while Sanker et al. (2021) obtained the best results from a laptop 
with an external, head-mounted microphone and Freeman and de Decker (2021a) advocated 
the use of a laptop, regardless of whether the microphone was internal or external. The present 
results align best with the recommendations from Sanker et al. (2021) and Freeman and de 
Decker (2021a): Even though the lossy .weba file format used on Gorilla would be expected to 
cause some distortions, those were fewer than those found on smartphones for the direct formant 
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analysis, despite the smartphones using a lossless format. Why this generalization did not hold 
true for the Euclidean distance analysis is less clear. It is possible that the inherently relativizing 
nature of the EuD computation was better able to compensate for the particular distortions 
present in the smartphone recordings, or perhaps the lack of difference between the control group 
and smartphone data in EuD was accidental. After all, a certain lack of precision is inherent in 
EuD as a measure of reduction. While it captures the length of the reduction conceptualized as a 
vector, both the direction and relative position of that vector remain unanalyzed. In short, while 
the smartphone recordings did not prove superior in every regard, as might have been expected 
due to the lossless recording format, it was not unprecedented that the laptop-based Gorilla 
recordings should meet with a measure of success, based on the results of previous studies.

4.3. Challenges and sources of variation
Of the challenges researchers should expect to encounter when collecting speech production 
data remotely, acoustic distortion arising from the hardware and software used is among the 
more predictable elements. Variation due to microphone placement should be expected, but can 
be mitigated by providing clear instructions and opportunities to test and amend the recording 
setup before beginning the experimental task. This mitigation was successful only to a degree in 
the present study, as variation in clarity and SNR was clearly audible throughout the remotely 
recorded files. Background noise may prove more difficult to manage, as participants are not 
always aware of the extent of noise in their surroundings or the degree to which it is detectable 
by the microphone, and creating incentives to manage background noise can be logistically 
challenging and time-intensive for researchers. In short, researchers should expect that many 
participants’ files will have some degree of background noise, and that some files will likely have 
loud and disruptive, if intermittent, noise.

Data loss due to unexplained causes should also be expected. In the current study, for instance, 
one participant submitted only a smartphone file and no Gorilla files (or rather, there was no 
sound in any of his Gorilla recordings). This was likely due to a failure to recognize that, although 
Gorilla was “recording”, the microphone was not enabled or not connected – in short, to user 
error on the participant’s end. It is worth noting that this error occurred despite the inclusion of 
a microphone check task at the beginning of the experiment that allowed participants to verify 
that their microphone was recording clearly.

4.4. Possible impacts of normalization
One as-yet unexamined source of variation – or, more positively, correction – within the current 
data rests in formant normalization. To account for interspeaker differences and especially 
gender-based differences, the data were normalized using log-additive regression normalization, 
a procedure suitable for missing and unbalanced data that aims to preserve sociolinguistic 
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variation while reducing interspeaker variation and contains more stringent protections against 
overnormalization than, for example, Lobanov normalization (Barreda & Nearey, 2018). Some 
unique aspects of the current study may have led to unintentional impacts of the normalization 
procedure on the resulting data. For example, normalization did not account for differences in 
recording method in any way; all three datasets were normalized together, with only interspeaker 
differences recognized by the algorithm as overtly-labeled sources of variation. While this was 
necessary to ensure the resultant values were on the same scale, perhaps the lack of differentiation 
led to some loss of difference in the vowel categories across recording methods. Similarly, to ensure 
any differentiation between reduced vowels was maintained after normalization, reduced vowels 
were coded as members of a single vowel category with their unreduced counterparts (rather 
than being coded together as members of a /ə/ category). Again, while logistically necessary, it is 
possible that this decision created a bias of sorts in the normalization procedure, contributing to 
under-normalization and perhaps skewing the results. In the absence of more work on this form 
of normalization, or a more extensive analysis of the original unnormalized data, it is difficult 
to conclude what impacts, if any, the normalization procedure may have had on the conclusions 
of the current study. As other normalization procedures have been found capable of correcting 
the distortions introduced by recording in a lossy file format (see, e.g., Calder et al., 2022 on 
Lobanov normalization), it is not unreasonable to suspect that normalization can introduce a 
degree of change capable of shifting the outcome of a study. However, unless one undertakes 
a by-speaker analysis, some normalization is necessary when working with formant data, and 
log-additive regression normalization is uniquely suited to working with unbalanced data such 
as that found in this study.

4.5. Conclusions and directions for future research
The goal of the present study was to examine the differences in acoustic output and the conclusions 
of analyses based on that output across three recording conditions. Where previous work has 
issued clear recommendations on the suitability of remote data collection for spectral analysis of 
vowels concerned with minor shifts in vowel quality (not recommended) and broad properties 
of vowel position (likely suitable for remote data collection) (Freeman & de Decker, 2021a, 
2021b), little has been done to differentiate among analyses requiring an intermediate degree of 
precision. In this study on vowel reduction, it became clear that the degree of divergence from 
data collected in a laboratory setting depended not only on the phenomenon under inspection, 
but also on the analytical approach. Pillai scores, a sweeping measure of overlap, were more 
resilient to differences of recording device and compression codec, than were Euclidean 
distances, a measure of relative computed distance in the vowel space, which in turn were more 
resilient than direct analysis of formant values. The results suggest that similar future speech 
production research based on remotely collected data may be considered reliable under certain 
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circumstances. However, careful consideration of the hardware and software used, as well as the 
analytical parameters selected, must be made to ensure results are not misleading. Even relative 
measures, such as vowel reduction, are only resilient to variation up to a point, and distortions 
large enough to impact the conclusions of an analysis are possible.

Many important questions remain open for future research at the conclusion of this study. The 
degree to which normalization can correct for or exaggerate distortions introduced by differences 
of hardware, software, microphone placement, or background noise, for instance, deserves 
further investigation in the specific context of remote data collection. Further investigation of the 
acoustic quality of Gorilla’s Audio Recording Zone is also warranted, with an additional focus on 
differences in its .weba and .mp3 output options. Finally, examination of other phonetic speech 
phenomena beyond vowel reduction is critical to expanding the generalizability of both current 
and past results.



27Conklin: Examining Recording Quality from Two Methods of Remote Data Collection in a Study of Vowel Reduction

Additional files
Appendices. A PDF file containing three appendices: The list of target words and carrier 
phrases used in the experiment, a list of microphones used by participants according to self-
report, and additional statistical output not presented in the body of the work. DOI: https://doi.
org/10.16995/labphon.10544.s1

Data & Code. A ZIP file containing the data files from the experiment and sample code from the 
statistical analysis and visualizations. DOI: https://doi.org/10.16995/labphon.10544.s2
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