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We present a new methodological approach which combines both naturally-occurring speech
harvested on the web and speech data elicited in the laboratory. This proof-of-concept study
examines the phenomenon of focus sensitivity in English, in which the interpretation of particular
grammatical constructions (e.g., the comparative) is sensitive to the location of prosodic
prominence. Machine learning algorithms (support vector machines and linear discriminant
analysis) and human perception experiments are used to cross-validate the web-harvested and
lab-elicited speech. Results confirm the theoretical predictions for location of prominence in
comparative clauses and the advantages using both web-harvested and lab-elicited speech.
The most robust acoustic classifiers include paradigmatic (i.e., un-normalized), non-intonational
acoustic measures (duration and relative formant frequencies from single segments). These
acoustic cues are also significant predictors of human listeners’ classification, offering new
evidence in the debate whether prominence is mainly encoded by pitch or by other cues, and
the role that utterance-normalization plays when looking at non-pitch cues such as duration.
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1 Introduction

The World Wide Web is enormous, free, immediately available, and largely
linguistic. As we discover, on ever more fronts, that language analysis and
generation benefit from big data, so it becomes appealing to use the Web as a data
source. The question, then, is how. (Kilgarriff, 2007)

Linguists have been using text data from the web in published work since at least
Grefenstette (1999). The appeal, as Kilgarriff (2007) notes, is the low cost of entry: Most
researchers have quick and easy access to a search engine—even quicker since 2007,
following the rise of internet-enabled mobile devices.

The cost of entry for speech research on the web remains considerably higher, even as
the publication of new speech data on the web accelerates, due to platforms like iTunes
and YouTube and to infrastructure with greater bandwidth and storage capacity.

The problem, of course, is that search engines search text, not speech. Unless a
transcription exists, speech data on the web are effectively invisible. And even when a
transcription does exist, it may not be time-indexed. This problem is shared by those who
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publish speech to the web, and who want to maximize public exposure to their content.
For these content producers, there is an obvious commercial incentive to create search-
able, time-indexed transcriptions.

At this time, speech researchers do not have access to anything approaching the power
and scope of a Google text-search. Nonetheless, the quantity of transcribed, time-aligned
speech online is significant and growing. In this study, we present a proof-of-concept
for harvesting and analyzing speech data from the web. We leveraged two websites
(Everyzing.com and play.it) which indexed radio podcasts with transcriptions obtained
with automatic speech recognition (ASR). While the transcriptions varied in quality at
the sentence level, accuracy typically exceeded 50% the level of short, common word
sequences (Howell & Rooth, 2009).

Our greatest motivation in using web-harvested speech is the dramatic expansion and
diversification of the empirical base it offers linguistic theory. Data collected through per-
sonal introspection or elicitation in a university or commercial laboratory represent only
a small part of the diversity of human speech. Web-harvested speech, because it is nat-
urally-occurring, reflects a more diverse set of speakers and social contexts. Traditional,
curated corpora are static (usually by design) and out-dated (because of the time and
effort required to assemble and maintain them). The web, by contrast, is dynamic and
evolving.

Naturally, speech data from the web cannot replace existing forms of data. Kilgarriff
(2007) cautioned researchers on the challenges and pitfalls of using textual data from
the web. In the case of speech data, one must proceed with even greater caution, since
the text itself, particularly if generated by ASR, introduces additional biases. With this in
mind, we implement an approach for validating results obtained from web data by using
machine learning and speech data elicited in the laboratory.

We use our approach to investigate the phenomenon of focus sensitivity in English, in
which the interpretation of particular grammatical constructions are sensitive to the loca-
tion of prosodic prominence. Formal semantic theories of focus make clear predictions for
the location of focus in a given discourse context and we want to test these predictions by
measuring acoustic prominence in naturally-occurring speech.

Unlike the case of introspective or laboratory data, we lack control over the discourse
context in naturally-occurring speech, and it may also be challenging to recover the dis-
course context. For this proof-of-concept study, then, we investigated a focus-sensitive
construction in which the relevant discourse antecedent is always explicit. This is the
comparative clause than I did, where as we explain below, the location of prominence is
predictable from a property of the main clause of the comparative sentence.

We test semantic predictions by building an acoustic classifier. Our methodology
uses an explicit machine-learning classification model to evaluate the predictions of
a semantic/pragmatic theory of the distribution of focus in a specific syntactic-lexical
context, and to investigate the signal features that are involved in marking focus in that
context. The methodology is computational and has a certain complexity, but manageable
because it takes advantage of well-established classification models and implementations
of them in R. In the interest of making it easier to apply the computational method to sim-
ilar problems, we have distributed code and datasets for the experiments (Howell, 2016).

In addition to evaluating the semantic theory, it is also possible to ask which sets of
acoustic measurements contribute to successful classification. We compare the perfor-
mance of classifiers which use measures of F against classifiers which use other, non-F
measures. And we also compare classifiers which use un-normalized, ‘paradigmatic’ meas-
ures against classifiers using ‘syntagmatic’ measures which have been normalized within
the utterance.


www.Everyzing.com
www.play.it

Howell et al: Acoustic classification of focus Art.16, page3 of 41

Finally, we also compare the performance of the machine learning classifiers to that of
human listeners, and we test whether the same acoustic measures contribute to human
listener performance.

The paper has the following organization. The rest of the introduction elaborates the
semantics and pragmatics of focus sensitivity and the phonetics and phonology of prosodic
prominence. Section 2 describes the methods of data collection for the laboratory-elicited
and web-harvested speech, while Section 3 details the machine learning classification,
including the algorithms used and how they are evaluated. In Sections 4 and 5 we report
on classification using web data and lab data, respectively. In Section 6, we provide a
comparison of logistic regression models; and in Section 7, we report on human listener
classification. The conclusion is presented in Section 8. Replication data, including acoustic
measurements, scripts and speech recordings, to the extent possible, are published online
at the Harvard Dataverse (Howell, 2016).

1.1 The semantics of focus sensitivity

In English, prosody is used to mark certain parts of an utterance as salient in the dis-
course. For instance, the speaker A in (1) makes it salient that someone ate the sushi, but
at the time of B’s utterance it is not yet salient that Sara ate the sushi. We say that Sara is
‘focused’ in (1B) and ate the sushi is not focused or ‘given.’

(D A: You ate the sushi.
B: No, Sara ate the sushi.

In ‘anaphoric’ or ‘givenness’ theories of focus, we understand the relationship between an
utterance and the discourse as a kind of anaphora. Roughly, reduced prominence on ate
the sushi in (1B) is licensed by the earlier sequence ate the sushi in (1A).

Discourse anaphors need not be explicit, however. Suppose we are at a Japanese
restaurant and order a plate of sushi. You leave for a few minutes and return to find your
partner sitting in front of a dirty, empty plate. That someone ate sushi (whether true or
not) is now salient in this context, and the utterance in (2) is therefore felicitous, even
without an explicit discourse antecedent.

(2) In the presence of a dirty, empty plate...
B: Sara ate the sushi.

Rooth (1992) and Schwarzschild (1999) offer two well known formalisms of focus
anaphoricity, the former emphasizing contrastive focus and the latter emphasizing
givenness/newness. Both accounts posit a kind of focus skeleton, a semantic object with
variables replacing the focused phrases, e.g., ‘X ate the sushi.” Rooth’s ‘focus semantic
value’ is the set of propositions obtained by replacing the focused phrase with alternatives
of the same type; Schwarzschild achieves a similar effect by existentially quantifying over
focused phrases.!

Thus, from the utterance [Sara]_ ate the sushi, Rooth would derive a focus semantic
value such as {‘Juan ate the sushi,” ‘The server ate the sushi,” ‘The woman at the next
table at the sushi,’ ... }. Schwarzschild would derive an existentially quantified proposi-
tion ‘Someone ate the sushi.’

Focus is licensed if the focus skeleton stands in a particular relation to a discourse
antecedent. For Rooth, the antecedent must be an element of the focus semantic value.
For Schwarzschild, the antecedent must entail the existentially quantified proposition.

! The authors do, of course, also allow for cases of focus within constituents smaller than a proposition. The
reader is referred to these works for the full proposals.
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Although more work comparing the two formalisms is required, they are largely equivalent
with respect to focus anaphoricity (cf. Rooth, 2016). For the following discussion, we’ll
assume a relation of entailment holds, following Schwarzschild.

Comparative clauses have the useful property of always occurring with an explicit ante-
cedent: The main clause. Suppose the comparative clause than I did in (3a) is interpreted
as ‘I stayed to some degree long.” With focus on the subject I, we derive an existentially
quantified proposition ‘Someone stayed to some degree long,” which is entailed by the
main clause antecedent ‘He stayed to some degree long.”

Similarly, we derive an existentially quantified proposition ‘I like that song some degree
at some time’ in (3b), which is entailed by the main clause antecedent ‘I like that song
some degree at the present time.” In (3c), we derive an existentially quantified proposi-
tion ‘T understand some degree little at some time,” which is entailed by the main clause
antecedent ‘T understand some degree little today.’

3) (a) Subject focus (class ‘s’)
He stayed longer than [I] did
antecedent: He stayed x long

(b) Non-subject focus (class ‘ns’)
I like that song a lot more than I [did],
antecedent: I like that song x much

(c) Non-subject focus (class ‘ns’)
Iunderstand less today than I did [yesterday],
antecedent: I understand x little

As a proxy generalization® for focus anaphoricity, we will say that when reference varies
in the subject position between the main and than-clauses as in (3a), the subject pronoun
I'in the than-clause is semantically focused. When reference is constant in the subject posi-
tion as in (3b) and (3c), semantic focus occurs instead on did or on a following adverbial.
We can refer to this generalization as the co-reference criterion (4).

4 Co-reference criterion for focus in comparative clauses

If the subjects of the main and comparative clauses have different referents, the
token belongs to class ‘s’ (subject focus);

Else, the token belongs to class ‘ns’ (non-subject focus).

With the co-reference criterion, we have an independent way of classifying the comparatives
that does not involve prosody.

Together with an interface principle that relates semantic focus to prosodic prominence,
theories of focus anaphoricity make testable predictions for the location of prosodic prom-
inence in comparative clauses. A naive interface principle states simply that a focused
constituent is prosodically prominent. One reason for the naivety of this principle is the
non-trivial computation of ‘focus constituent.” For example, there is a large literature on
focus projection (e.g., Breen et al. 2010; Drubig, 1994, 2003; Gussenhoven, 1992; Jacobs,

2 Here the degree variable is existentially quantified. The same results are obtained if there are occurrences
of the same free degree variable in the main clause and the comparative clause.

3 Although the co-reference criterion divides instances of the comparative exhaustively, it should be noted
that there are certain cases in which it does not correspond exactly with theoretical accounts of focus. In
particular, the co-reference criterion does not distinguish cases of double focus, such as (i). The co-reference
criterion predicts that (i) belongs in class ‘s’ (subject focus).

(i)  You should have earned less last year than [I] did [this], year
Antecedent: You should have earned x much last year
‘You should have earned x much last year’ entails ‘someone earned x much at some time.’
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1999; Selkirk, 1995; Winkler, 1996) concerned with prominence within large focus con-
stituents (cf. I love [cheese], vs. I [love cheese] ), arguing against a naive principle. We set
aside this issue here, since the focused constituent at issue in our datasets consists of a
single element, namely the pronoun I.

1.2 The prosody of focus sensitivity

As described in Section 2, we extracted more than 300 acoustic measurements from
utterances of than I did. In building acoustic classifiers, we do not attempt to make an
exhaustive comparison of different combinations of these 309. Nor do these 309 meas-
urements exhaust the possible ways of measuring utterances of this short string. We do,
however, consider two ways of grouping the measurements which bear on long-standing
issues in the phonetic and phonological study of prosodic prominence.

The first grouping separates syntagmatic measurements (for example, those which
relate I and did in the same utterance) from paradigmatic measurements (for example a
measurement from I alone). In the last half century, phonologists studying how we pro-
duce and perceive prosodic prominence and semanticists studying how we use prosodic
prominence to make discourse coherent have advanced their understandings using two
ostensibly opposite conceptions of prosodic prominence. Phonologists have argued that
prominence should be understood as primarily relational or syntagmatic, e.g., a word
or syllable is prominent only with respect to an adjacent word or syllable; semanticists
have operated under the tacit assumption that prominence is essentially absolute or
paradigmatic: e.g., a word or syllable simply is or isn’t prominent.

(5) ... [a], B ... paradigmatic comparison
!
LafB..
(6) wlal; [ ... syntagmatic comparison

Although linguists from many theoretical traditions have noted the syntagmatic nature
of prosody (e.g., Jakobson et al. 1952; Ladefoged, 1975; Lehiste, 1970; Saussure,
1967[1916]), the relational nature of prominence was explicitly codified in the theory
of metrical phonology (e.g., Giegerich, 1985; Halle & Vergnaud, 1987; Hayes, 1981,
Liberman, 1975; Liberman & Prince, 1977; Prince, 1983; Selkirk, 1984), which views
prominence, particularly stress, as hierarchically organized rhythmic structure.

In contrast, there is a tradition among semanticists and syntactians to use capitalization,
italics or other typographical conventions to indicate prominence, tacitly assuming a par-
adigmatic comparison. One also finds this view represented in phonetic alphabets, such
as the International Phonetic Alphabet, and in early generative theories of prominence
(Chomsky & Halle, 1968). More recently, several semantic accounts have attempted to
model the semantics after the syntagmatic phonological accounts, evaluating focus or
givenness as a relation between pairs of adjacent constituents (e.g., Rooth, 2009, 2015;
Wagner, 2005, 2006; Williams, 1997).

The second grouping separates measures of F from all other measures. The work of
Fry (1955, 1958) long ago dispelled the myth that prominence was realized primarily by
loudness. Since then, however, the scientific literature on acoustic prominence has been
dominated by discussion of fundamental frequency and pitch. Kochanski (2006) reported
that, in one sample, articles about F outnumbered articles investigating other prosodic
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cues by nearly 5 to 1. Yet different lines of research have pointed to the robustness of non-
F, measures. Work in laboratory phonetics and phonology has identified non-F; cues of
accent in speech production (e.g., Campbell & Beckman, 1997; Cho, 2006; De Jong, 1991;
Ladefoged, 1967; Ladefoged & Loeb, 2002; Lehiste, 1970) and in the acoustics of speech
(e.g., Beckman & Pierrehumbert, 1986; Lehiste, 1970).

In the domain of phonology, work in the autosegmental tradition (e.g., Bruce, 1977,
Goldsmith, 1976; Leben, 1973; Liberman, 1975; Pierrehumbert, 1980) motivated a distinc-
tion between pitch accent and stress. This leads to the question of which category—pitch
accent or stress—is the primary correlate of semantic focus: In the derivationally-oriented
terminology of Selkirk (1984), whether focus is ‘stress-first’ or ‘accent-first.’

Semanticists remained largely unconcerned with the debate, apart from intensive inves-
tigation of the licensing configuration for putatively ‘accentless’ second occurrence focus
(e.g., Beaver & Clark, 2008; Kadmon, 2001; Partee, 1991; Rooth, 1996). Experimental
studies of this phenomenon (e.g., Bartels, 2004; Beaver et al., 2007; Bishop, 2008; Howell,
2011) confirmed that significant pitch cues of prominence were indeed absent. However,
other acoustic measures of prominence related to stress, such as duration and intensity,
were present in small but statistically significant amounts.

Experimental evidence also suggests at least three categorical levels of prominence.
Beckman and Edwards (1994) studied the articulation of the syllable pa in three contexts,
which we will refer to as phrase accented, word accented, and unaccented: The first syl-
lable of papa (7a), the first syllable of papa in (7b) and the second syllable of papa in (7b),
respectively. The phrase-accented syllable carries a pitch accent and has an unreduced
vowel; the prosodic word-accented syllable is postnuclear and has an unreduced vowel;
the unaccented syllable has a reduced vowel.

7) a. [Washer mama a problem about the wedding?]
Her Papa posed a problem.

b. [Did his dad pose a problem as far as their getting married?]
Her papa posed a problem.

This categorical distinction was first proposed by Bolinger (1958, 1981) and Vanderslice
and Ladefoged (1972) (Gussenhoven 2004: 20; see also Halliday 1967). This influential
distinction between phrase accenting and word accenting is fundamental to the ToBI
annotation framework (Beckman & Ayers, 1994).

Beckman and Edwards observe that the contrast between the accented syllable and the
unaccented syllable is particularly robust for vowel duration and the degree and speed
of jaw opening movement. We can infer that vowel reduction is also correlated with less
extreme formant movement. Although we do not use them here, measures of spectral
balance and post-focal compression have also been implicated in distinguishing between
levels of stress (e.g., Sluijter & van Heuven, 1996; Xu et al., 2004).

2 Methods of data collection
2.1 Web harvested data

We collected two different web-harvested corpora of utterances containing than I did,
using a methodology detailed in Howell and Rooth (2009). A set of standard UNIX tools
(e.g., curl, cutmp3, awk, bash, make) replicates user interaction with an external search
engine. The search engine, provided by RAMP (formerly Everyzing), uses automatic
speech recognition to index speech and identify possible utterances of a word sequence,
in our case than I did. The first corpus (webl) was collected using their search interface
at Everyzing.com; the second corpus (web2) was collected using their search interface at
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play.it. The Everyzing interface searched content from a variety of content providers, but
predominantly radio stations, including WEEI, WNYC, KPBS, WRKO, NPR and the White
Rose Society. The play.it interface searched content from various member stations of CBS
radio.*

Retrieval efficacy varies by dataset, but Howell and Rooth found that roughly 50% of
purported tokens were true, unique and readable. Manual filtering was required. Dataset
web1 contained 90 true tokens of than I did: 45 tokens with subject focus (‘s’) and 45
tokens with non-subject focus (‘ns’). Dataset web2 contained 127 true tokens: 62 tokens
with subject focus and 65 tokens with non-subject focus.

The antecedent and comparative clause in each token was manually transcribed into
English prose. From this transcription, the tokens were manually categorized into one
of the two focus categories, according to the co-reference criterion (cf. 4). Although this
semantic classification was performed by humans, the task did not require special exper-
tise or training beyond identifying and comparing grammatical subjects of the two clauses.

2.2 Laboratory-elicited data

2.22 Stimuli

A total of 16 written stimuli were constructed, modeled after attested examples in the
web-harvested corpora. Eight of the stimuli contained an ordinary, first occurrence focus
(e.g., 8) and the other eight contained both a first occurrence focus and a repeated, second
occurrence focus. The conditions for second occurrence focus were created by contrasting
an adjective or verb (e.g., longer in 9) or by contrasting a degree modifier (e.g., lot in 10).

(8 He saw the situation differently than I did. = FOF stimulus (subject focus)

9 You worked harder than I did, FOF stimulus (subject focus)
and you worked longer than I did. SOF stimulus (subject focus)

(10)  Ithink Tom said it a little better than I did. =~ FOF stimulus (subject focus)
In fact, he said it a lot better than I did. SOF stimulus (subject focus)

Among the FOF-only stimuli, half were statements (e.g., 11) and half were wh-questions
(e.g., 12).

(11)  There were a lot of photographers who would shoot more than I did.

4 The Everyzing and play.it interfaces are no longer available, although the same technology has since been
made available for a variety of different content providers, including WNYC, Fox Business, and PBS. For
tools which interact with these newest interfaces, readers are invited to contact the authors.

Researchers interested in incorporating web-harvested speech corpora are also advised to identify and
review other similar resources appropriate for their needs. At the time of writing, we are aware of at least
three additional sources of transcribed and time-indexed naturally-occurring speech available on the web.

- Audiosear.ch and its associated API provides full-text search of podcasts including programming
from National Public Radio (NPR) and the Canadian Broadcasting Corporation (CBC). Many
ASR-generated transcripts are manually corrected and so transcription quality can be quite
excellent.

- Google and YouTube host videos with closed captioning/subtitles which are time-aligned to short
stretches of speech.

- Digital artist Sam Levine has provided python scripts (Levine, 2016) which search subtitle files
from YouTube and other media or from transcriptions generated by the open-source automatic
speech recognition system CMU Sphinx (Huggins-Daines et al., 2006; Lamere et al., 2003).

Levine’s platform allows for GREP search of regular expressions and part of speech tagging, which could be
applied, for example, to focus-sensitive expressions which are themselves discontinuous (e.g., either... or)
from their focus associate (e.g., only).
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(12) Why do I have more energy today than I did the day before?

Each experimental condition was balanced for semantic focus condition: Half of the
tokens had subject focus and half had non-subject focus. The full set of stimuli are given
in Appendix B. In order to limit the scope of this paper, we leave the SOF examples for
future analysis. Henceforth, any mention of laboratory data (lab) will refer only to the
FOF examples.

2.3 Recording

Participants were recorded in a sound-attenuated room. Twenty-seven individuals
participated, although one participant’s speech failed to be recorded, leaving a total of 26
participants. Participants were paid.

The stimuli were presented on a computer screen using a set of MATLAB scripts written
by Michael Wagner for conducting prosody experiments. In addition to the 16 target sen-
tences, participants also read 18 filler sentences.

No additional context was provided to participants outside of what appears in Appendix B.
We choose the comparative construction in order to avoid the challenges of ensuring that
each participant used the same discourse antecedent. Since the main clause provides the
explicit discourse antecedent for the comparative clause, theory predicts that additional
context will be unnecessary for the purpose of conditioning focus.

After reading the text aloud, participants were asked to rate the naturalness of the writ-
ten stimuli on a scale from 1 (very natural) to 5 (very awkward). The mean rating for the
individual stimuli ranged from 1.72 to 3.08; the overall mean was 2.35, suggesting that
the stimuli were reasonably naturalistic.

Nineteen tokens were discarded due to speaker disfluencies, such as false starts,
hesitations, or utterances that did not match the written stimuli, leaving 397.

2.4 Segmentation

The extraction of acoustic information required annotation at the phonetic level. For each
utterance of than I did, the following phonetic segments were annotated: V1, the vowel
[2] of than; N1, the nasal [n] of than; V2, the diphthong [a1] of I; C3, the stop closure and
burst of the initial [d] in did; and V3, the vowel [1] of did.

The web-harvested data were labeled manually by the experimenters or by research
assistants trained for the task. For segmentation criteria, we used oral and nasal constric-
tion landmarks in the spectrogram and waveform: Change in amplitude between vowels
and the nasal and oral stops, and the high frequency burst of oral stop releases (cf. Turk
et al., 2006).

The laboratory-elicited data were, in addition, automatically forced-aligned using a set
of Python scripts that interface with the Hidden Markov Model Toolkit (HTK) (Gorman
et al., 2011). Since the manually-annotated laboratory data did not result in improved
classification, we report only on the forced-aligned laboratory data. Alignment failed on
3 files for a total of 394 tokens.

2.5 Acoustic extraction

A total of 309 acoustic measures were extracted using the scripting function of Praat
(Boersma & Weenink, 2017). Phenomena of interest included duration, fundamental fre-
quency (F,), first and second formants (F1 and F2), intensity, amplitude, voice quality,
and spectral tilt. Means or extrema were taken for these phenomena, at regular intervals
within a vowel or at the time of other extrema. The ratio between I and did were also
calculated for many measurements, including duration, F, and intensity. The full list of
measurements is provided with descriptions in Appendix A.
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3 Machine learning classification

A traditional acoustic phonetic study examines a handful of variables relative to a large
number of observations (small p, large n), allowing application of methods from classical
statistics such as ANOVA and logistic regression. Given a set of more than 300 variables and
as few as 90 tokens,® the data in this study may, by contrast, be considered large p, small n
(also known as High Dimension Low Sample Size or, henceforth, HDLSS). Accordingly, we
pursue statistical methods for high-dimensional data borrowed from fields where HDLSS
data are ubiquitous, including biotechnology, medical imaging, astrophysics, finance, and
e-commerce. In genetics, for example, one may wish to examine many thousands of genes
in a modest number of tissue samples.

First, we apply two machine learning techniques which have been effective in the
classification of HDLSS datasets: Linear discriminant analysis (LDA) and support vector
machines (SVMs). Second, and in addition, we apply feature selection, using an automated
method and a manual, human method. SVMs map linear features into a multidimensional
feature space, while feature selection (also known as feature reduction) reduces an appar-
ently high-dimensional structure to a low-dimensional structure.

The machine learning classification and feature selection methods are discussed in
Sections 3.1 and 3.2, respectively. Sections 3.3 and 3.4 describe the methods of evaluating
classifier performance and the division of data into test sets and training sets.

3.1 Classification algorithms

Two machine learning techniques were used to create predictive models of the
data. Linear discriminant analysis (LDA) is a classification framework based on
multidimensional Gaussian probability distributions that has been used widely in pat-
tern recognition tasks (Venables & Ripley, 2002). Support vector machines (SVMs)
(Boser et al., 1992) are a relatively recent method of supervised classification that
have achieved excellent accuracy in tasks such as object recognition (Evgeniou et al.,
2000), cancer morphology identification (Mukherjee et al., 1999), and text categoriza-
tion (Joachims, 1997). In both cases, we begin with training data consisting of vectors
of acoustic measurements, divided into an ‘s’ set from tokens with shifting reference in
the subject position, and ‘ns’ for constant reference in the subject position. An estima-
tion procedure produces a real-valued objective function h of the linear form (13a). It
can be used used to label points in the space with ‘s’ or ‘ns,” according to the decision
rule (13b).

The decision surface for the model is the surface that divides points that are classi-
fied as ‘s’ from those classified as ‘ns.” In a dataset with two dimensions, the decision
surface is a line dividing the two-dimensional space, and in general, in a dataset with
n features, a hyperplane (i.e., an affine subspace of dimension n — 1). Figures 1 and 2
illustrate decision surfaces in two-dimensional and three-dimensional models drawn
from our data.

13) @ hx)=w-x+0b
(b) if h (x)>0 then s else ns

An LDA model is estimated by fitting a multivariate Gaussian distribution to the data
with each label, subject to a constraint of equal co-variance for the two distributions. A
Bayes optimal decision rule then results in a linear decision surface. In contrast to an LDA
model, which because of the estimation procedure is sensitive to all the training data,

> As noted in Footnote 4, the audio search landscape has evolved since we first collected our web data and
we were limited to 90 and 127 tokens in our training and test sets, respectively.
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points are from observations with varying reference in the subject position (our operational
definition of focus), and blue points are from observations with constant reference in subject
position. In this case the LDA and SVM decision surfaces are are nearly the same.

Decision surface for 3D linear discriminant
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Figure 2: On the left, the decision surface for a three-dimensional LDA classifier. The extra feature
relative to Figure 1is maxf0-ratio, the difference between the maximum F_ value in the second
vowel of “than | did” and the maximum F in the third vowel. Red points have varying reference
in the subject position (subject focus), and blue points are from observations with constant
reference in subject position. On the right, the decision surface for an SVM with radial basis
function kernel estimated from the same data.

the decision plane in an SVM model is sensitive only to a subset of the training data. The
plane is positioned in a way that maximizes distance to nearby data points (the support
vectors), and includes also a penalty for mis-classified data (Cortes & Vapnik, 1995).
LDA models make assumptions which may not be satisfied by the true distributions for
our problem, namely normality of the distributions, and (assuming normality) equality of
covariances for the two classes. Poor results may also obtain if the training set is small.
Furthermore, the LDA classifier has been shown to perform best when the number of

6 The sample size should be 10 times the number of attributes according to Brown and Tinsley (1983), 20
times the number of attributes according to Stevens (2002).
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attributes is minimized (ideally no greater than 2 attributes for a binary classifier) and
when the attributes are not intercorrelated (cf. Brown & Wicker, 2000).” Our 309 acoustic
measurements outnumber the tokens in our datasets, and groups of features are likely
to be highly correlated. In the next section, we discuss a method of attribute selection,
in order to reduce this number of attributes. In practice, however, it is often possible to
obtain good results for an LDA classifier even with small datasets and even with data in
violation of the assumptions of normal distribution and homogeneity of covariances (e.g.,
Klecka, 1980; Lachenbruch, 1975; Stevens, 2002). The implementation of linear discri-
minant function analysis we use is available in the MASS package (Venables & Ripley,
2002) for the statistical computing environment R (R Development Core Team, 2016).
The implementation of SVM we use is available in the libsvm package (Chang & Lin,
2011; Dimitriadou et al., 2009) for R.®

Another feature of SVMs is the possibility mapping of linear attributes into a multi-
dimensional feature space. This is done by replacing dot products by a non-linear kernel
function.® This greatly reduces the typical computational complexity of training, at the
cost of somewhat increased computational complexity during testing.!® Although the data
should be internally scaled for best results, use of a non-linear kernel also avoids the need
to transform attributes which may be non-linear (e.g., duration and energy in our data).
Many kernel functions have been used successfully in different classification tasks. Hsu
et al. (2003) recommend a radial basis function (RBF),!! a non-linear mapping which has
been shown to also encompass a linear kernel (Keerthi & Lin, 2003) and which behaves
similarly to a sigmoid kernel (Lin & Lin, 2003). Hsu et al. note that the RBF kernel requires
only two hyperparameters, while a polynomial kernel, for example, will contain two or
more, contributing to model complexity. (All kernels contain at least one hyperparameter
C, cost or constant, which sets the penalization for a datum occurring on the wrong side
of the margin.) At the same time, Hsu et al. also suggest that the results of a linear kernel
may be comparable with those of an RBF kernel in situations where the number of attrib-
utes to be mapped is greater than the number of data instances. This situation obtains for
those of our classifiers which use the unfiltered set of 309 attributes and are applied to
datasets of 90 and 127 (viz. the web-harvested datasets). We therefore consider classifiers
using both RBF kernels in addition to linear ones. Figure 2 shows the curved decision
boundary obtained in a three-dimensional model with an RBF kernel.

Estimating LDA and SVM classifiers requires datasets without missing values. Algorithms
in Praat and other acoustic analysis software have a notoriously difficult time extracting
values such as Fin the absence of regular, periodic voicing. A dataset with missing values
was therefore unavoidable, and many values were undefined. Typically, a dataset with
less than 5% missing data is considered manageable, while more than 5-10% missing data
may bias subsequent statistical analysis and can require sophisticated methods of data
imputation. All of our datasets fell within these acceptable rates of missingness. The web-
harvested datasets web1l and web2 had missing rates of 0.6% and 0.8%, respectively. The
laboratory-elicited dataset had a missing rate of 2.5%.

7 The methods of regularized discriminant analysis (Friedman, 1989) or shrinkage discriminant analysis
(Ahdesméki & Strimmer, 2010) have been proposed to improve performance of simple discriminant analysis
when the number of attributes exceeds the size of the dataset. We do not pursue these methods here.

8 The two and three-dimensional models underlying Figures 1 and 2 were obtained with the MATLAB fitcdiscr
function.

° The terms ‘feature’ and ‘attribute’ are used here in their statistical or computational sense, referring to a
particular vector of data (e.g., the vector of data corresponding to 2nd vowel duration). Note also that the
terms ‘feature’ and ‘attribute’ are often used to distinguish predictors before and after kernel mapping,
respectively. Since nothing in the study hangs on this distinction, we will use the terms interchangeably.

10 This is the typical case; however, as an anonymous reviewer notes, it is not a guaranteed effect.
11 Equation for RBF kernel: I((x,x"): exp(fyll x—x° ||2).
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Many different kinds of data imputation exist. Single imputation methods replace all
missing data with the same value, such as -1, 0 or 1, or the mean or median of the
variable. One disadvantage of single imputation is that it fails to model the variability
of the underlying data. Multiple imputation methods use algorithms to impute a particu-
lar value for each data point using information from observations without missing data.
Some common methods of multiple imputation include hot- and cold-deck imputation
and k-nearest neighbor imputation. We experimented informally with several of these
methods of imputation and none resulted in noticeable differences in classifier perfor-
mance. Leaving in-depth study of imputation for future research, we chose to use mean
imputation on all of the datasets.

Optimizing the value of hyperparameters is often recommended. In this study, we were
able to achieve robustly performing classifiers with the default settings (== and C=1).
We therefore leave the contribution of tuning to future investigation.

3.2 Redundant features and feature selection

In building a classifier, one may be concerned simply with the classification task itself:
Developing and improving the ability of a particular decision function to generalize from
one set of data (a training set) to another (a test set). We may call this the ‘functional
measure’ (cf. Cristianini & Shawe-Taylor, 2000).

One may also be concerned with how the classification task is achieved and how closely
it models real human cognitive ability. We may call this the ‘descriptional measure.” The
relative importance of the functional and descriptional measures typically varies accord-
ing to the goals of the researcher. Consider the following functionally-oriented view from
Cristianinni and Shawe-Taylor.

Shifting our goal to generalisation removes the need to view our hypothesis as a cor-
rect representation of the true function. [...] In this sense the criterion places no con-
straints on the size or on the ‘meaning’ of the hypothesis — for the time being these
can be considered to be arbitrary. (Cristianini & Shawe-Taylor, 2000: Section 1.2)

Another more descriptionally-oriented researcher concerned primarily with the under-
lying or ‘true’ function may be wary of even a high-accuracy decision function which
incorporates what may seem to be linguistically irrelevant or orthogonal noise in the data.

In practice, however, the functional and descriptional are not mutually exclusive and
are, one hopes, mutually informative. One may, for example, apply the functional meas-
ure to establish a pattern in the data and apply other methods to understand the contribu-
tion of different features in the model. In this study, we want a classifier which accurately
predicts a focus category—a functional measure, but we also wish to know which acoustic
measures are important for this task—a descriptional measure.

Feature selection is one means of peering into the ‘black box’ of a classifier, and
understanding which features are contributing to a model’s generalization accuracy.
Pragmatically, feature selection is also sometimes necessary to improve classifier perfor-
mance. Collinearity in LDA models have been shown to lead to stability problems (e.g.,
Naes and Mevik 2001). SVMs, despite their promise as a classifier which does not require
feature selection, have been shown to improve the generalization accuracy and/or model
complexity (and thus computation) for those datasets with redundant and/or irrelevant
features. For example, Sarojini et al. (2009) demonstrate improved accuracy for a clinical
dataset with a large number of instances (768) and a small number of features (8 prior
to feature elimination) while conversely Weston et al. (2001) demonstrate this effect
for cancer discrimination in a dataset with a small number of instances (72) and a large
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number of features (7129 genes). More generally, removing redundant features mitigates
the potential for a classifier to be mislead and for overfitting of the model.

Most authors agree that some combination of manual and statistical feature selection
techniques may be used, although there is no consensus on the ordering or relative
importance of manual or statistical feature selection:

Feature selection should be viewed as a part of the learning process itself, and
should be automated as much as possible. On the other hand, it is a somewhat
arbitrary step, which reflects our prior expectations on the underlying target
function. (Cristianini & Shawe-Taylor, 2000: Chapter 3)

To start, the initial variable list should be logically screened, based on substantive
theory, prior research, and reliability of measures, as well as on practical grounds.
Next, the list can be statistically screened. (Huberty, 2006: 11)

Of course, an investigator’s professional opinion also can be relied upon when
selecting potential discriminator variables. (Brown & Wicker, 2000: 212)

Many statistical methods of feature selection exist. Filter methods select features accord-
ing to some importance measure independent of the classifier, such as correlation or
information gain. Embedded methods incorporate selection into the training process of
classification; a set of minimally optimal features for the classification task are identified.
As a reviewer notes, features which are pre-selected automatically may however cause an
increase in the generalization error rate of a classifier (see for example Barron, 1994). In
contrast, wrapper methods use information from a classifier (possibly a different classi-
fier) prior to training and are used to select not just a set of non-redundant features, but
all relevant features. With a functional measure in mind, we chose an all-relevant wrap-
per method known as the Boruta algorithm which is available as an R package (Kursa &
Rudnicki, 2010). Briefly, the algorithm generates fake or ‘shadow’ features and iteratively
compares the real features against them, using a random forest classifier to compute a
significance measure.

In addition to applying the Boruta algorithm to the full set of 309 acoustic measures, we
also applied the algorithm to theoretically meaningful subsets: F -related measures, non-
F -related measures, syntagmatic measures (i.e., ratios between I and did), and paradig-
matic measures (i.e., from a single word). Finally, based on a combination of theoretical
expectation and trial-and-error, we also selected several feature sets by hand.

Note that because we are considering two different training sets (first the web-harvested
dataset web1 and later the laboratory-elicited dataset lab), we apply feature selection inde-
pendently for the two sets. The results of the Boruta algorithm are detailed in Section 4.1.

The set of acoustic measures used by a machine learning classifier to predict focus will
not necessarily correspond to the set of acoustic measures that a human speaker uses to
convey focus or to the set of features an individual human listener uses to interpret focus.
It is therefore important to investigate the use of acoustic measures in human classifica-
tion, which we do in Section 7.

3.3 Evaluation of classifier performance

Typically, a classification algorithm generates a model from a set of labeled data
(a training set) and this model is then used to predict unseen data without labels (a test
set). If the correct labels of the test set are known, we can compare them against the mod-
el’s predictions. The proportion of correct labels and the proportion of incorrect labels
are known as the generalization accuracy and generalization error, respectively. As a
measure of bias—whether the classifier tends to predict one class more accurately than the
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other-we calculate a balanced error rate (BER), which is an average of the two within-
class error rates. We also compare the results against a simple baseline accuracy, which is
the proportion of the larger class. The three statistics are given in (14, 15, 16).

#tokens in largest class of test set
# tokens in both classes in test set

(14) Baseline accuracy

#tokens in test set accurately classified 1

(15) Generalization accuracy 00

# tokens in test set

(16) Balanced error rate #tokens incorrect " # incorrect | 1 100

# total #total |2

In addition to calculating these performance statistics for each classifier, we also wanted
some confidence that a classification model wasn’t overfitting the particular training data
and that its performance on the test data was not by chance. To assess this, we performed
permutation-based validation (cf. Hsing et al. 2003; Jensen, 1992; Molinaro et al., 2005).
The class labels of the training set were randomly permuted before training and perfor-
mance statistics calculated in the usual way. This process was iterated n times. In theory,
one may repeat this for all possible permutations, although this strategy is impractical
for computational reasons. A large number of iterations (we chose n = 5000) produces a
reasonable approximation of the empirical cumulative distribution for the permutation-
achieved performance statistics.

In Figure 3, we plot the empirical distribution of permutation-achieved generalization
accuracy for a particular classifier. The x-axis represents generalization accuracy; the

1.0

— -~ observed accuracy S —
—— accuracy at p = 0.05 /

ecdf
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] |

0.2
1
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|
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Figure 3: Example plot of an empirical cumulative distribution of permutation-achieved statistics.
The x-axis represents generalization accuracy; the y-axis represents the cumulative distribution
(i.e., the proportion of the permuted data which is less than or equal to the value of x). If
the observed accuracy (red line) falls outside of the 95th percentile (blue line), we say that
the observation is statistically significant with a p-value of greater than 0.05. This provides a
confidence measure with which we can reject the null hypothesis that the classifier achieved
the observed statistic at random.
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y-axis represents the cumulative distribution (i.e., the proportion of the permuted data
which is less than or equal to the value of x). If the observed accuracy or balanced error
falls outside of the 95th or 99th percentile, we say that the observation is statistically
significant with a p-value of greater than 0.05 or 0.01, respectively. This provides a con-
fidence measure with which we can reject the null hypothesis that the classifier achieved
the observed statistic at random.

We can visualize the significance of multiple classifiers in one figure by plot-
ting the observed and permutation-achieved statistics as single points, as in Figure 4
(cf. Lyons-Weiler et al., 2005). The observed statistic is plotted in black; the permutation
achieved statistic at p = 0.05 and p = 0.01 is plotted in green and red, respectively. If
the observed statistic falls outside of the permutation achieved statistic, we say that the
observed statistic is statistically significant.

SVM (radial) SVM (linear) LDA
All-
Best-
AllFO-
Best FO -
All non-F0 -
., Bestnon-Fo+ Permutation
3 Achieved
o Statistic
5 All syntag -
.g —o— p =0.01
. -~ p=0.05
Best syntag -
All paradig -
Best paradig -
Exp A-
Exp B-
Exp C-
25 50 75 25 50 75 25 50 75
Accuracy and Balanced Error Rate

Figure 4: Example plot of permutation-achieved statistics (cf. Lyons-Weiler et al., 2005). Each
panel shows a different classification method: SVM with radial kernel, SYM with linear kernel
and LDA (left-to-right). Within a panel, the x-axis displays accuracy/error rate as a percentage
and the y-axis lists classifiers according to the feature sets used. Within a panel, the left-side
black dot corresponds to the observed balanced error rate, while the right-side black dot
corresponds to the observed accuracy rate. An asymmetry between the two dots indicates a
bias towards one of the two classes. The permutation achieved statistic at p = 0.05 and p = 0.01
is plotted in green and red, respectively. More extreme permutation-achieved statistics (i.e.,
greater accuracy or smaller balanced error) reflect more structure in the data. If the observed
statistic (black dot) falls outside of the permutation achieved statistic (i.e., to the left of the
colored dots in the case of balanced error rate or to the right of the colored dots in the case of
accuracy rate), we say that the observed statistic is statistically significant.
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For convenience, we plot the accuracy rate and BER on the same figure. An asymmetry
between the two, therefore, represents a bias towards one of the two classes.

More extreme permutation-achieved statistics (i.e., greater accuracy or smaller balanced
error) reflect more structure in the data. For example, if the acoustic values are randomly
distributed with respect to the two focus classes, we expect less variance among the per-
mutation-based statistics and less extreme statistics atp = .01 and p = .05. If the acoustic
values are nonrandomly distributed with respect to the classes, we expect more variance
and more extreme statistics at p = .01 and p = .05, since some permutations will be more
positively and negatively correlated with the acoustic values.

Note that this permutation test does not directly compare one classifier’s performance
against another’s. In order to determine this, we performed McNemar’s test (McNemar, 1947;
see also Gillick & Cox, 1989), a test for the difference of two proportions which has been
used to compare machine learning classifiers. A non-parametric counterpart of the t-test,
McNemar’s test compares the null hypothesis that the two classifiers misclassify the same
tokens, using a 7?2 test for goodness-of-fit. Although it doesn’t measure variability due to
choice of training set (e.g., webl vs. lab), McNemar’s test does exhibit acceptably low Type I
error and reasonably high power (Dietterich, 1998). We apply the test to compare a classifier
using a subset of features to the related algorithm using the full set of features.

Finally, we wanted to assess the relevance of individual features used in the best per-
forming classifiers. To do this, we compared pairs of logistic regression models—one with
and one without the feature of interest-using an ANOVA and chi-squared test of statistical
significance.

3.4 Training/test pairs

In order to make comparison manageable, we did not test and train the datasets in all
possible combinations. Rather, we used just two datasets for training: The web-harvested
dataset web1l and the laboratory-elicited dataset lab. We tested the web-trained classifi-
ers on the remaining web-harvested dataset web2 and on the laboratory-elicited dataset
lab (Section 4). We tested the laboratory-trained classifiers on the web-harvested dataset
web2 (Section 5). Table 1 summarizes the datasets under consideration.

4 Machine classification experiments 1: Web-harvested training data
4.1 Feature selection by algorithm

All-relevant feature selection using the Boruta algorithm applied to the web1l web-har-
vested dataset produced the feature sets (17, 18, 19, 20, 21). From the full feature set, the
algorithm selected a combination of F, non-F, syntagmatic, and paradigmatic features
that included measures of vowel duration, F, energy and formant values. No measures of
intensity, spectral tilt, jitter, or shimmer were selected.

From the set of exclusively F  features, Boruta selected measures of the value and timing
of F,means, minima, and maxima, both paradigmatically and syntagmatically.

From the set of exclusively non-F features, Boruta selected measures of vowel duration,
glottal pulse, intensity, energy, amplitude, and formant values. The duration and formant

Table 1: Summary of Datasets.

Name source annotation size (ns/s) baseline accuracy
web1 web-harvested:Everyzing manual 90 (45/45) 50.5
web2 web-harvested:play.it manual 127 (65/62) 51.2

lab laboratory-elicited automated 394 (193/201) 51
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values were mostly paradigmatic, coming almost exclusively from I; and the values related
to loudness (i.e., glottal pulse, intensity, energy and amplitude) were all syntagmatic. The
formant values came from the first and second formant of I, both individually and as a
ratio, and at intervals from 20 to 70 percent of the vowel duration.

From the set of exclusively paradigmatic features, Boruta selected measures of duration,
glottal pulse, minimum and range of F, and first and second formant values at several
different intervals. All of the paradigmatic features were selected from I.

From the set of exclusively syntagmatic features, Boruta selected measures of intensity,
amplitude, energy, duration and the value or timing of mean, minimum, maximum and
range of F.

(17)  Features selected by Boruta algorithm from full feature set
duration_V2 energy ratio  f2Time60_V2
pulses_V2 f2Time20 V2 f1Time70_V2
pulses_ratio f2Time30 V2 f1f2Time20 V2
meanfO _ratio fl1Time40 V2 f1f2Time30 V2
maxf0_ratio f2Time40 V2 f1f2Time40 V2
minfOTime ratio fl1Time50 V2 f1f2Time50 V2
rangef0_V2 f2Time50 V2 f1f2Time60 V2
rangefQ_ratio f1Time60 V2

(18)  Features selected by Boruta algorithm from set of F  features
meanf0 ratio maxfOTime V3 rangef0_V2
maxf0 ratio maxfOTime ratio rangef(_ratio
minfO_ratio minfOTime V2
maxfOTime V2 minfOTime ratio

(19)  Features selected by Boruta algorithm from set of non-F features
duration_V2 f2Time20 V2  f1Time70_V2
pulses_V2 f2Time30 V2  f1f2Time20 V2
pulses_ratio f1Time40 V2  f1f2Time30 V2
maxIntensity_ratio f2Time40 V2  f1f2Time40_V2
energy_ratio flTime50 V2  f1f2Time50 V2
amp_ratio f2Time50 V2  f1f2Time60 V2
maxfl V2 f1Time60 V2
f1Time20 V2 f2Time60 V2

(20)  Features selected by Boruta algorithm from set of syntagmatic features

pulses_ratio
meanf0 _ratio
maxf0 _ratio

maxfOTime ratio
minfOTime ratio
rangefQ_ratio

energy_ratio
amp_ratio
duration_ratio

minfO_ratio maxIntensity_ratio

(21)  Features selected by Boruta algorithm from set of paradigmatic features

duration_V2
pulses_V2
minfOTime V2
rangef0_V2
f1f2Timel0 V2
f2Time20 V2
f2Time30 V2

f1Time40 V2
f1Time40 V2
f1Time50 V2
f1Time50 V2
f1Time60 V2
f1Time60 V2
f1Time70 V2

f1f2Time20 V2
f1f2Time30 V2
f1f2Time40 V2
f1f2Time50 V2
f1f2Time60 V2
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4.2 Classifier results
4.21 Web-trained, web-tested

In this section we train the classifiers on the web-harvested dataset webl, and test the
classifiers on a second web-harvested dataset web2. The results are summarized in Table 2
and Figure 5. Each of the observed classifier accuracies and balanced error rates of the
classifiers was statistically significant (p < .05 using a permutation-achieved statistic),
with the best performing classifier achieving 92.9% accuracy and 6.5% balanced error.

The classifiers using the full set of 309 features performed well above the baseline
(83.5%, 79.5% and 78.0% with SVM-RBF, SVM-linear and LDA, respectively). Recall,
however, that we use feature selection with the intent of removing redundant, potentially
misleading features and avoiding overfitting of the model. Most of the classifiers using
an automatically selected subset of features failed to achieve a statistically significant
improvement (p < .05 using McNemar’s test) over the same algorithm using the full set
of features, with the exception of the LDA algorithm using a set of best non-F, features
or a set of best paradigmatic features. In addition, we observed the following numerical
tendencies: Classifiers using only non-F measures outperformed classifiers using only F,
measures; and classifiers using only paradigmatic measures outperformed classifiers only
using syntagmatic measures.

Table 2: Accuracy and balanced error rates for different classification models: Training set web1;
test set web2. Shading indicates p < .05 according to the corresponding permutation-achieved
statistic (i.e., rejection of the null hypothesis that the classifier achieved the accuracy/BER
by chance). Bolding indicates p < .05 in a comparison with the same algorithm trained on the
full feature set, using McNemar's test (i.e,, rejection of the null hypothesis that the difference
between the two classifiers is due to chance).

web1 - web2
Feature set Baseline SVM (RBF) SVM (linear) LDA
1. Full feature set 51.2 83.5 13.8 79.5 18.9 78.0 21.3
2. '‘Best’ features 51.2 83.5 16.5 88.2 11.7 86.6 12.9
3. All F, features 51.2 80.3 19.3 71.7 28.0 73.2 26.7
4. ‘Best’ F features 51.2 75.6 243 76.4 23.2 75.6 243
5. All non-F, features 51.2 83.5 13.8 78.7 20.3 79.5 19.3
6. ‘Best’ non-F, features 51.2 82.7 17.3 85.8 141 89.9 9.9
7. All syntagmatic features 51.2 80.3 19.6 75.6 241 78.0 201
8. ‘Best’ syntagmatic features 51.2 78.7 21.2 75.6 24.4 74.8 23.9
9. All paradigmatic features 51.2 81.9 16.6 78.7 20.0 73.2 26.6
10. ‘Best’ paradigmatic 51.2 82.7 17.3 87.4 12.2 89.0 10.8
11. Experimenter-selected A 51.2 91.3 7.7 92.9 6.5 92.9 6.5
duration_V2, f1f2Time50_V2,
meanf0_ratio, duration_C3
12. Experimenter-selected B 51.2 921 YAl 92.9 6.5 92.9 6.5

duration_V2, f1f2Time50_V2,

maxf0_ratio, duration_C3

13. Experimenter-selected C 51.2 89.0 9.9 913 77 90.6 8.3
duration_V2, f1f2Time50_V2,

duration_C3
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Figure 5: Accuracy and balanced error rates with permutation achieved significance for different
classification models: Training set web1; test set web2.

The different algorithms performed competitively, and the classifiers using
experimenter-selected features achieved the best overall results, almost all showing a
statistically significant improvement over the same algorithm using the full set of features.

4.2.2 Web-trained, lab-tested

Next, we use the same set of web-trained classifiers and test them on laboratory data. The
results are summarized in Table 3 and Figure 6.

The observed accuracies and balanced error rates of nearly all of the classifiers were statis-
tically significant (p < .05 using a permutation-achieved statistic), with the best-performing
classifier achieving 87.6% accuracy and 10.5% balanced error. The non-significant results
came principally from classifiers using only F features and only syntagmatic features.

The classifiers using the full set of 309 features performed well above the baseline
(77.9%, 80.2% and 72.8% with SVM-RBF, SVM-linear and LDA, respectively). Classifiers
using only the automatically selected set of best F features demonstrated a statistically
significant worse performance (p < .05 using McNemar’s test) over the same algorithm
using the full set of features. By contrast, classifiers using only the automatically selected
set of best non-F features achieved a statistically significant improvement. Similarly, clas-
sifiers using only the automatically selected set of syntagmatic features failed to achieve
a statistically significant improvement or demonstrated a statistically significant worse
performance over the same algorithm using the full set of features, while classifiers using
only the automatically selected set of best paradigmatic features achieved a statistically
significant improvement.
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Table 3: Accuracy and balanced error rates for different classification models: Training set web1;
test set lab. Shading indicates p < .05 according to the corresponding permutation-achieved
statistic (i.e., rejection of the null hypothesis that the classifier achieved the accuracy/BER
by chance). Bolding indicates p < .05 in a comparison with the same algorithm trained on the
full feature set, using McNemar's test (i.e., rejection of the null hypothesis that the difference
between the two classifiers is due to chance).

web1 - lab
Feature set Baseline SVM (RBF) SVM (linear) LDA
1. Full feature set 51.0 719 16.9 80.2 16.6 72.8 23.6
2. ‘Best’ features 51.0 85.0  14.2 85.8 121 85.8 131
3. All F, features 51.0 69.0 30.5 66.5 335 70.8 29.2
4. ‘Best’ F features 51.0 69.0 30.6 63.2 36.6 62.4 375
5. All non-F_ features 51.0 797 153 81.0 15.7 79.7 188
6. ‘Best’ non-F, features 51.0 83.8 144 83.0 144 812 152
7. All syntagmatic features 51.0 75.4 223 70.8 28.6 64.5 35.5
8. ‘Best’ syntagmatic features 51.0 73.4  25.4 67.3 32.2 64.5 35.4
9. All paradigmatic features 51.0 787 162 73.4 201 789 19.7
10. ‘Best’ paradigmatic 51.0 76.9 17.8 80.5 15.2 817 16.0
11. Experimenter-selected A 51.0 845 14.8 85.3 13.6 85.3 13.3
duration_V2, f1f2Time50_V2,
meanf0_ratio, duration_C3
12. Experimenter-selected B 51.0 873 120 85.3 12.8 86.3 11.6
duration_V2, f1f2Time50_V2,
maxf0_ratio, duration_C3
13. Experimenter-selected C 51.0 876 10.5 87.6 10.7 85.0 12.2
duration_V2, f1f2Time50_V2,
duration_C3

The different algorithms performed competitively, and the classifiers using
experimenter-selected features achieved the best overall results, all showing a statistically
significant improvement over the same algorithm using the full set of features.

4.3 Discussion

The performance of classifiers trained on web-harvested data overwhelmingly supports the
theoretical predictions for location of prominence in comparative clauses. With few excep-
tions, classifiers performed well above the baseline, calculated as the percentage of the
larger class, and satisfied statistical significance (p < .05), calculated using permutation
achieved statistics.

Variation in classifier performance revealed not only the robustness of classifiers using
F, and syntagmatic features, but the robustness of classifiers making use of non-F  and
paradigmatic features. Indeed, a majority of classifiers which used exclusively non-F  or
paradigmatic features achieved statistical significance (p < .05), even on those datasets
for which many classifiers using exclusively F or syntagmatic features failed to meet sta-
tistical significance. It was also the case that neither the classifiers using exclusively F;
features nor the classifiers using exclusively syntagmatic features achieved a statistically
significant improvement over the same algorithm using all 309 features. By contrast,
classifiers using exclusively non-F or paradigmatic features in most cases achieved a
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Figure 6: Accuracy and balanced error rates with permutation achieved significance for different
classification models: Training set web1; test set lab.

performance which is either not significantly different from or significantly better than
the same algorithm using all 309 features.

For each dataset, the best performing classifiers used a combination of F, non-F,
paradigmatic, and syntagmatic features, usually those selected by hand: Duration of I, the
first consonant closure duration in did, the F1-F2 differential at the midpoint of I, and the
mean or maximum F_ ratio between I and did. Further, the hand-selected classifiers that
lacked the latter, syntagmatic F, measures did not differ significantly from those which
included them (at the level of p < 0.05 using McNemar’s test).

Thus, while the syntagmatic and F measures are undeniably relevant to the categorization
of focus placement in these data (demonstrated also by their selection by the all-relevant
Boruta algorithm), the evidence suggests that they may not be necessary. The results of
these classification experiments are incompatible with theories of prominence and focus
realization which privilege F, measures and syntagmatic evaluation to the exclusion of
other non-F and paradigmatically evaluated measures.

We also wish to acknowledge that duration may properly be regarded as syntagmatic,
given the effect of speech rate on its interpretation. Among our full set of features we
included a syntagmatic measure of duration: The ratio of duration of I to the duration of did.
However, unlike the un-normalized measure of duration on I alone, the syntagmatic meas-
ure of duration was not selected by the Boruta feature selection algorithm. Anecdotally,
the syntagmatic measure of duration was also unhelpful in arriving at an experimenter-
selected set of best features.



Art.16, page22 of 41 Howell et al: Acoustic classification of focus

5 Machine classification experiments 2: Laboratory-elicited training data
5.1 Feature selection by algorithm

All-relevant feature selection using the Boruta algorithm applied to the laboratory-elicited
dataset (lab) produced much larger feature sets than when applied to the web-harvested
dataset (web1). The feature sets selected are listed in Appendix C. From the full feature
set, the algorithm selected 66 different features, which included measures of F, glottal
pulse, jitter, shimmer, intensity, energy, power, first and second formants and duration,
and a combination of syntagmatic and paradigmatic measures.

From the set of exclusively F  features, Boruta selected measures of the value
and timing of F  means, minima, maxima, and range, both paradigmatically and
syntagmatically.

From the set of exclusively non-F features, Boruta selected 60, which included measures
of vowel duration, glottal pulse, jitter, shimmer, intensity, energy, power amplitude and
formant values. Both syntagmatic and paradigmatic values were selected, the latter com-
ing from both I and did. The formant values came from the first and second formant of I
at intervals from 10 to 80 percent of the vowel duration.

From the set of exclusively syntagmatic features, Boruta selected 15 features, which
included measures of amplitude, intensity, energy, power, duration, glottal pulse, and F,.

From the set of exclusively paradigmatic features, Boruta selected 60 features, which
included measures of duration, glottal pulse, intensity, power, jitter, shimmer, F, and first
and second formant values, from both I and did.

5.2 Classifier results
5.21 Lab-trained, web-tested

In this section, we train classifiers on laboratory data (lab) and test them on web-harvested
data (web2) in order to compare results from Section 4. The results are summarized in
Table 4 and Figure 7.

The observed accuracies and balanced error rates of nearly all of the classifiers were
statistically significant (p < 0.05), with the best-performing classifier achieving 92.1%
accuracy and 7.9% error. The non-significant results came from classifiers using only F;
features and only syntagmatic features.

The classifiers using the full set of 309 features performed well above the baseline
(77.2%, 77.2% and 72.4% with SVM-RBF, SVM-linear and LDA, respectively). Classifiers
using only the automatically selected set of best F_ features failed to achieve a statistically
significant improvement (p < .05 using McNemar’s test) or demonstrated a statistically
significant worse performance over the same algorithm using the full set of features.
By contrast, classifiers using only the automatically selected set of best non-F features
achieved a numerical but not statistically significant improvement.

In addition, we observed the following numerical tendencies: Classifiers using only
non-F, measures outperformed classifiers using only F, measures; and classifiers using
only paradigmatic measures outperformed classifiers using only syntagmatic measures.
Similarly, classifiers using only the automatically selected set of syntagmatic features
failed to achieve a statistically significant improvement or demonstrated a statistically
significant worse performance over the same algorithm using the full set of features, while
classifiers using only the automatically selected set of best paradigmatic features achieved
a numerical but not statistically significant improvement.

The different algorithms performed competitively, and the classifiers using experimenter-
selected features achieved the best results overall, all showing a statistically significant
improvement over the same algorithm using the full set of features.
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Table 4: Accuracy and balanced error rates for different classification models: Training set lab;
test set web2. Shading indicates p < .05 according to the corresponding permutation-achieved
statistic (i.e., rejection of the null hypothesis that the classifier achieved the accuracy/BER
by chance). Bolding indicates p < .05 in a comparison with the same algorithm trained on the
full feature set, using McNemar's test (i.e., rejection of the null hypothesis that the difference
between the two classifiers is due to chance).

lab - web2
Feature set Baseline SVM (RBF) SVM (linear) LDA
1. Full feature set 51.2 772 223 772 227 724 273
2. ‘Best’ features 51.2 78.0 19.7 78.0 220 772 225
3. All F, features 51.2 67.7 322 65.4 347 60.6 38.8
4, ‘Best’ F features 51.2 700 29.9 661 33.9 59.8 39.6
5. All non-F, features 51.2 787 212 748  25.0 685 314
6. ‘Best’ non-F, features 51.2 78.0 20.2 78.0 214 811 18.2
7. All syntagmatic features 51.2 677 291 61.4 347 63.0 325
8. ‘Best’ syntagmatic features 51.2 68.5 285 583 373 61.4 34.0
9. All paradigmatic features 51.2 78.0 22.0 78.7  20.9 74.0 257
10. ‘Best’ paradigmatic 51.2 795 19.0 78.0 211 74.8 25.0
11. Experimenter-selected A duration_V2, 51.2 88.2 116 90.6 9.2 90.6 9.2
f1f2Time50_V2, meanf0_ratio, dura-
tion_C3
12. Experimenter-selected B duration_V2, 51.2 88.2 116 921 7.9 920.6 9.2
f1f2Time50_V2, maxf0_ratio, duration_C3
13. Experimenter-selected C duration_V2, 51.2 86.6 13.2 90.6 9.2 89.8 10.0

f1f2Time50_V2, duration_C3

5.3 Discussion

The performance of classifiers trained on laboratory-elicited data, like classifiers trained
on web-harvested data, strongly supports the theoretical prediction for location of promi-
nence in comparative clauses. With few exceptions, classifiers performed well above the
baseline, and satisfied statistical significance (p < .05).

The classifiers trained on laboratory-elicited data also revealed the robustness of
classifiers using non-F and syntagmatic features. Indeed, classifiers using non-F, and
syntagmatic features achieved statistical significance without exception. Numerically, the
classifiers using non-F and syntagmatic features also outperformed the classifiers using F
and paradigmatic features.

The best performing classifiers, however, included a combination of F , non-F, syntagmatic,
and paradigmatic, whether the features were selected algorithmically with Boruta or whether
the features were selected manually by the experimenter. The experimenter selected feature
sets included: Duration of I, the first consonant closure duration of did, the F1-F2 differential
at the midpoint of 1, and the mean or maximum F ratio between I and did. The performance
of the classifiers which included a syntagmatic F measure differed only marginally from the
performance of the classifier which lacked either of the syntagmatic F measures.

Thus, the performance of classifiers trained on laboratory data confirm that, while unde-
niably relevant acoustic cues, the F and syntagmatic measures are not necessary acoustic
cues for these data, contra prosodic-semantic theories of focus according to which F, (or
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Figure 7: Accuracy and balanced error rates with permutation achieved significance for different
classification models: Training set lab; test set web?2.

pitch) and syntagmatic evaluation are unique or pre-eminent. In the following sections,
we consider the contribution of individual measures in simpler, logistic regression models
of production and perception.

With respect to contrasts between classifiers trained on laboratory data and classifiers
trained on web data, we have not shown that there exists a statistically significant difference.!?
However, the consistent magnitude of difference, (i) between the web-trained lab-tested
classifiers and the lab-tested web-trained classifiers and (ii) between web-trained web-tested
classifiers and web-trained lab-tested classifiers, both around 5%, suggests an asymmetry.
Both laboratory and web speech may be used as training data for web speech. However, the
web speech proved somewhat less effective as training data for laboratory speech.

This asymmetry is consistent with the observation that many of the tokens from the web
dataset were produced by professional broadcasters. These speakers are less likely to pro-
duce speech that is potentially ambiguous (e.g., produced with coarticulation, reduced vow-
els) and more likely to mark prosody consistently (Ostendorf & Shattuck-Hufnagel, 1996)
and with hyperarticulation. It follows, then, that a classifier trained on clearer speech (with
respect to these dimensions) would have more difficulty when applied to laboratory speech
than on similarly clear speech; and a classifier trained on laboratory and a classifier trained
on laboratory speech would do equally well on speech which is equally clear or less clear.

There is, of course, no a priori reason to expect this difference. Variation in the web
speech—for example, in terms of expressivity, recording quality, speaker, or discourse
context-might have made it the superior training dataset instead of the laboratory data.

12 McNemar’s test does not measure variability due to training set.
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As a consequence, the web data may offer an important source of cross-validation, not
only because they are produced more naturally and in a variety of different pragmatic con-
texts, but because the web speech appears to contain tokens with more idealized realiza-
tions. Moreover, it is encouraging that the classifiers work in either direction, as it suggests
that results from lab speech lead to valid generalizations that extend to non-lab speech.

Finally, the failure of the base algorithm to identify the good features, and feature
selection not doing as well as experimenter selection, is a negative result for a purely
automatic procedure. This is a topic for further research using machine learning method-
ologies. Fresh data and more data will be a help in approaching it.

6 Model comparison of logistic regression
6.1 Results

A direct statistical comparison of two SVM or LDA classifiers would require additional
datasets, as discussed earlier. We may, however, get a sense of how individual features
are contributing to less complex models, using logistic regression. In this section, we com-
pare a logistic regression model of web1 using experimenter-selected feature set A (dura-
tion_V2, duration_C3, f1f2Time50_V2, meanf0 ratio) against four smaller models, each
lacking a different member of the feature set, using an Analysis of Variance (ANOVA) (cf.
Baayen et al., 2008). ANOVAs for the datasets webl, web2, and lab in Table 5 show that
the removal of any one of the four features is statistically significant. In other words, each
of these features contributes significantly to explaining variation in the larger model.

Table 5: Summary of Analysis of Variance (ANOVA) comparing a full logistic regression model with
features duration_V2, duration_C, f1f2Time50_V2, and f0_ratio against models lacking one of
these features.

web1 Df Residual Deviation Df Deviance Pr (>Chisq)
duration_V2, duration_C3, 85 19.266

f1f2Time50_V2, fO_ratio

all except duration_V2 86 48.901 -1 -29.635 5.22E-08*
all except duration_C3 86 25.917 -1 —-6.6512 9.91E-03*
all except f2f2Time50_V2 86 35.674 -1 -16.408 5.11E-05*
all except meanf0_ratio 86 23.917 -1 -4.6515 0.03103*
web2 Df Residual Deviation Df Deviance Pr (>Chisq)
duration_V2, duration_C3, 122 44,301

f1f2Time50_V2, fO_ratio

all except duration_V2 123 80.535 -1 -36.234 1.75E-09*
all except duration_C3 123 60.398 -1 -16.097 6.02E-05*
all except f2f2Time50_V2 123 53.216 bl -8.9146 2.83E-03*
all except meanf0_ratio 123 53.498 -1 -91969 0.00242*
lab Df Residual Deviation Df Deviance Pr (>Chisq)
duration_V2, duration_C3, 389 208.51

f1f2Time50_V2, fO_ratio

all except duration_V2 390 27519 -1 -66.675 3.20E-16*
all except duration_C3 390 221.46 -1 -12.949 3.20E-04*
all except f2f2Time50_V2 390 250.28 -1 -41.772 1.03E-10*

all except meanf0_ratio 390 216.36 -1 -7.8521 0.005076*
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6.2 Discussion

The classification experiments revealed the robustness of models with and without
syntagmatic F  features. We observed informally that minimally contrastive feature sets—
with and without a syntagmatic F feature-did not yield large differences in classifier
performance. The logistic regression models tested whether the ratio of F, means in I and
did contributed meaningfully to a model with paradigmatic, non-F measures.

Not only did the paradigmatic, non-F, features each contribute significantly to the
logistic regression model, but the ratio of F means contributed significantly as well. First,
this result supports our conclusion from the classification experiments that both F and
non-F and both syntagmatic and paradigmatic features are relevant to the classification
of focus placement in these data. Second, this result is evidence against the hypothesis
that the syntagmatic F features are redundant in these data (i.e., they contribute addi-
tional information). This result does not tell us, however, whether human listeners make
use of syntagmatic, F information in these data, a question we turn to in the final set of
experiments.

7 Human acoustic classifiers

In this section, we assess the validity of the machine learning classifier results by compar-
ing the machine learning classifiers to human classifiers. In other words, we want to know
how closely the machine learning classifiers mimic human speech perception in classifica-
tion accuracy and the acoustic measurements used to make judgements. We conducted
two perceptual experiments to answer this question: The first using stimuli from the web
dataset; the second using stimuli from the laboratory dataset.

7.1 Experiment 1: web stimuli
711 Method

A subset of 64 tokens from the web2 corpus dataset was chosen: The first 32 of each
semantic focus class. From each soundfile, the sequence “than I did” was extracted to cre-
ate the stimulus. The files were normalized for sampling frequency and amplitude. The
information presented to participants of the perception experiment was limited in this
way in order to more closely match the limited information available to the statistical
classifiers: Neither machine nor human had the preceding or following acoustic informa-
tion and neither machine nor human had any linguistic or extra-linguistic context.

Forty individuals participated in the perception experiment, which was conducted at
McGill University. Participants were compensated for their time. The data of two partici-
pants was not analyzed because the subjects reported making errors. The stimuli were
played one at a time, in random order, with no category repeated more than twice. After
each stimulus, the listener was asked to complete two tasks: first, to choose whether “I” or
“did” had greater prominence; second, to rate confidence in their choice on a scale from
1 (“very confident”) to 5 (“very uncertain”).

Of course, one may question whether a linguistically naive participant can easily under-
stand what ‘prominent’ means, and whether all participants in this experiment were
indeed answering the same question. We note anecdotally, however, that participants
seemed to find the task very natural and easy to complete, and given the results we have
the impression that participants found the notion of prominence quite intuitive.

We evaluate the results in two ways. First, we calculate accuracy rates and balanced
error rates, just as we did for the machine learning classifiers. In this way we can compare
the human and machine learning classifiers using the same performance measures. We
can also compare these measures by listener and by item. If many listeners consistently
misclassified any of the data or any particular items were misclassified consistently, this
would suggest a listener or item bias.
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Second, we evaluate generalized linear mixed models using two of the top-performing
feature sets. Mixed models allow us to incorporate random effects of listener and item.
We chose experimenter-selected feature set A (duration_V2, duration_C3, f1f2Time50_
V2, mean_fO_ratio) and experimenter-selected feature set C (duration_V2, duration_C3,
f1f2Time50_V2), because they were used for most of the top-performing machine learning
classifiers, and because they differed in a single feature of interest, namely mean_f0_ratio.
The modeling allows us to ask how much variance in listeners’ responses a model using
these features predicts. For a given model, we can also ask how predictive the individual
features in the model are, and whether the model predicts significantly more variation
than another model.

71.2 Results

Accuracy/Error: As a group, the 38 participants achieved a mean accuracy of 85.9%,
median accuracy of 89.1% and standard deviation of accuracies 8.3%. They achieved a
mean BER of 14.1%, median BER of 10.9% and standard deviation of BERs 8.3%. Partici-
pants’ individual accuracy rates ranged from 64.1% to 95.3% and their balanced error
rates ranged from 4.7% to 35.9% percent.

As for the items used in the experiment, only 3 were consistently misidentified by
listeners. The majority of the stimuli were classified correctly more than 80% of the
time. The mean by-item accuracy rate was 85.9%, the median 89.5% and the standard
deviation 16.9%.

Generalized linear mixed models: In order to understand which acoustic features
listeners were using to make their judgments, we tested for the statistical significance of
individual features in generalized linear mixed models using the R package lme4 (Bates
et al., 2015).

Both statistical models were significant, as were each of the individual fixed effects (i.e.,
the acoustic features), with the notable exception of mean_f0O_ratio (cf. Table 6).

We can quantify whether one of the two models of listener response is more predictive
than the other using ANOVA. The various goodness of fit criteria (AIC, BIC and log likeli-
hood) for our two models are very similar and according to the ¥ test statistic, we cannot
conclude that the model using feature set Experimenter-selected A predicts significantly
more variation than the model using feature set Experimenter-selected C. In other words,
we cannot say that adding the feature mean_f0_ratio results in a more predictive model of
listeners’ responses.

We can also perform model comparison to assess the contribution of the random
effects: Participant and item. A model with participant and item as random effect and
Experimenter-selected A as fixed effect explains significantly more variation than a model
with participant only as random effect and feature set Experimenter-selected A as fixed
effect (x2=80.533, p = 2.2e-16). Similarly, a model with participant and item as random
effect and Experimenter-selected A as fixed effect explains significantly more variation
than a model with item only as random effect and feature set Experimenter-selected A as
fixed effect (¢ = 21.465, p = 3.603e-16).

Confidence Rating: Participants’ confidence rating turned out to be a very significant
predictor of their performance on a given stimulus (generalized linear model: ¢ = 0.031,
z = -10.81, p < 0.001). This indicates that listeners have a degree of introspective access
to gradience or ambiguity in the prominence distinction.

71.3 Discussion

The performance of listeners in the perception experiment, as measured by classification
accuracy and BER, closely matched that of the machine learning classifiers. Recall that
the top-performing classifier achieved an accuracy rate of 92.9%: While some listeners’
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Table 6: Summary of generalized linear mixed models for listener responses to a subset
of web2 using predictors from hand-selected feature sets Experimenter-selected A and
Experimenter-selected C. Test statistic Wald z-score; statistical significance (p < 0.01) indicated
by asterisks.

Generalized Linear Mixed Model of Listener Response (Web Data).

Experimenter-selected A: duration_V2, duration_C3, f1f2Time50_V2, mean_f0_ratio
Random effects:

Groups Variance Std. Dev.
Participant 0.066720 0.25830
Item 0.041699 0.20420
Fixed effects:

Estimate Std. Error z-value p-value
Intercept 1.249 0.5746 2174 0.0297*
duration of | 36.05 2.332 15.457 <2e-16*
duration of first closure in did —45.24 3.509 -12.893 <2e-16*
F1F2 differential at midpoint of | -0.003067 0.0003291 -9.318 <2e-16*
ratio of mean FO in [ and did 0.004232 0.02654 -0.159 0.873 n.s.

Experimenter-selected C: duration_V2, duration_C3, f1f2Time50_V2

Random effects:
Groups Variance Std. Dev.
Participant 0.066720 0.25830
Item 0.041699 0.20420
Fixed effects:

Estimate Std. Error z-value p-value
Intercept 1.210236 0.520745 2.324 0.0201*
duration of | 35.946678 2.254716 15.943 <2e-16*
duration of first closure in did -45.078265 3.401762 -13.251 <2e-16*
F1F2 differential at midpoint of | -0.003068 0.000329 -9.326 <2e-16*

accuracy rates were as low as 64%, 16 out of the 38 human classifiers achieved an accu-
racy rate above 90%.'3

The comparison of listener response models revealed that item explains a statistically
significant amount of listener variation. Review of the item distribution, however, reveals
that 3 of the 64 items were effectively outliers, with accuracy rates well below 50%. The poor
human classifier performance on these items suggests that misclassification by the machine
learning classifiers are likely to be a result of other variation (e.g., speaker disfluency, high
signal-to-noise ratio) in the data by which human listeners were equally misled.

One misclassified example, transcribed in (22), received a listener accuracy rate of
18.4%. The co-reference criterion predicts this example will be realized with subject focus
since the subjects of the two clauses do not co-refer; however, the matrix clause also has
a salient contrast at that time which licenses focus on did.

13 The task of the human and of the machine were similar in that both had access to only the acoustic informa-
tion from the string “than I did.” Although we are encouraged by the close match in performance, we must
also note that it is possible that a human may achieve greater performance on a task more closely related to
how they usually use language, as opposed to the metalinguistic task used here of identifying prominence.
We leave this for future research.
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(22)  Growing up at that time and that location, you can’t have more fun as a kid
than [I], [did],

Example (22) is an infrequently occurring but linguistically possible example of double
focus. The task of the machine learning classifiers and the human listeners was binary
(two semantic classes for the machine learning classifiers and two prominence choices for
the human listeners), while example (22) effectively belongs to a third class.

Finally, the same feature sets used in the top-performing machine learning classifiers
(viz. Experimenter-selected A and Experimenter-selected C) were statistically significant
in a model of listener response. There was no main effect for the mean F ratio fea-
ture (i.e., it was not individually significant in the model), and removing the feature did
not result in a less explanatory model. This result is consistent with the corresponding
machine learning classifiers, for which the addition of the feature mean_f0_ratio did not
substantially improve generalization accuracy or error rates.

7.2 Experiment 2: laboratory production stimuli

721 Methodology

In the second perception experiment, human listeners were presented with excerpts of
“than I did” taken from a subset of the laboratory production data.'* The experiment was
carried out with the same methodology as in Experiment 1. Forty-one individuals partici-
pated.

7.2.2 Results

Accuracy/Error: The human acoustic classifiers performed on par with the machine
learning classifiers. For the lab data, the 41 listeners achieved a mean accuracy of 78.5%,
median accuracy 81.3%, and standard deviation of accuracies 13.1%. They achieved a
mean BER of 13.1%, median BER of 12.2%, and a standard deviation of balanced error
rates 6.9%. Participants’ individual accuracy rates ranged from 53.1% to 96.9% and
their balanced error rates ranged from 3.7% to 29.3%.

As for the items used in the experiment, 1 lab item was correctly identified at less than
50%. Among lab items, the mean accuracy rate was 78.5%, median 80.5%, and the stand-
ard deviation 16.9%.

Stimuli were drawn from eight different speakers in the production experiment. The
accuracy rates for individual speakers ranged from 67.4 to 82.0%. The mean accuracy
rate among speakers was 74.8%, median 73.9%, and standard deviation 5.0%.

Generalized linear mixed models: As in the first perception experiment, in order
to understand which acoustic features listeners were using to make their judgments,
we evaluated generalized linear mixed models using two top-performing feature
sets. Experimenter-selected A contains the features duration_V2, duration_C3, and
f1f2Time50_V2 as fixed effects; Experimenter-selected C contains the features duration_
V2, duration_C3, f1f2Time50_V2, and mean_f0 ratio as fixed effects. The two models
differed only in the feature mean_fO_ratio. Both models also contained participant and
item as random effects.

All of the listener response models were statistically significant. There were main effects
for each of the acoustic features, with the notable exception of mean_f0O_ratio, which was
not significant. The feature duration_V3 was only marginally significant in the lab model
using feature set Experimenter-selected A.

14 We used speech from the first 8 participants of the production study. We used 8 of the original 16 elicited
utterances—the same 8 for each of the 8 speakers: Tokens 1, 3,5, 7,9, 11, 13 and 15.
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Despite a marginal test statistic for the fO_ratio parameter estimate in the lab model
(p = 0.23795 is small but above an acceptable rate of a=0.05), an ANOVA comparing
the two lab models with and without mean_fO_ratio suggests that the addition of this
feature does indeed result in a more predictive model of listener response (x? = 80.533,
p = 2.2e-16).

ANOVAs revealed that the addition of item as random effect resulted in a more predictive
model of listener response on the lab dataset (x? = 13.654, p = 0.0002198). There was
not sufficient evidence to conclude that including participant as random effect resulted in
a more predictive model.

Confidence Rating: Participants’ confidence rating turned out to be a very significant
predictor of their performance on a given stimulus (generalized mixed-effects linear
model: 0 = 0.05844, z = 7.429, p < 1.10e-13), indicating introspective sensitivity to the
reliability of classification judgments.

7.2.3 Discussion

The performance of listeners in the perception experiment, as measured by classification
accuracy and BER, was on par with that of the machine learning classifiers.

Both logistic regression models confirmed that the contribution of the paradigmatic,
non-F  measures was statistically significant. There was insufficient evidence that the fea-
ture mean_f0_ratio contributed significantly (p = 0.24). However, an ANOVA comparing
the two models—-one with and one without mean_fO ratio-revealed that the feature does
in fact explain a statistically significant amount of variation in listener response which
the other variables in the model do not. This suggests that listeners are using both the
syntagmatic, F and paradigmatic non-F, measures in the lab data.

As in the perception experiment using web-harvested data, listeners did have difficulty
with a handful of items. The ANOVA comparing models with and without item as a
random effect was significant, indicating that item explains a statistically significant
amount of variation. The listeners’ less than perfect performance, like the machine classi-
fiers’ performance, may be at least partly explained by these outliers.

8 Conclusion
8.1 Discussion of results

We set out to test predictions of theories of focus interpretation in one constrained envi-
ronment. According to an anaphoric theory of focus, the location of focus in the compara-
tive clause is determined by the matrix clause. Operatively, the location of prominence
can be predicted according to the (co-)reference of the subjects in the main and compara-
tive clauses (cf. 4). The machine learning experiments confirmed the robustness of this
generalization with both naturally occurring and experimentally elicited data. Classifiers
trained exclusively on acoustic measurements from web-harvested data achieved accu-
racy rates as high as 92.9% and balanced error rates as low as 6.5% when tested on simi-
lar web-harvested data. They achieved accuracy rates as high as 87.6% and error rates as
low as 10.5% when tested on laboratory-elicited data, still well above a baseline of 51.0%
accuracy. Classifiers trained exclusively on acoustic measurements from laboratory-elic-
ited data achieved accuracy rates as high as 89.0% and balanced error rates as low as
10.5% when tested on web-harvested data.

The human classification experiments confirmed the robustness of the generalization
as well. Listeners presented only with web-harvested tokens of “than I did” achieved
a mean classification accuracy of 86.4% (standard deviation 8.1%) and a mean BER of
4.5% (standard deviation 2.8%). Listeners presented only with laboratory-elicited tokens
of “than I did” achieved a mean accuracy rate of 78.5% (standard deviation 13.1%) and a
mean BER of 13.1% (standard deviation 6.8%).
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In building the classifiers, we also took the opportunity to compare the contribution of
specific groupings of phonetic measures: One division between F  and non-F measures and
one division between paradigmatic and syntactic measures. In the machine learning clas-
sification, we observed a tendency for classifiers with exclusively non-F features to meet
or exceed the performance of exclusively F features. Of course, we do not wish to suggest
that F never signals prosodic prominence, as this is well attested. Indeed, classifiers using
exclusively F measures achieved accuracies as high as 79.5% and it is certainly possible
that that improved acoustic modeling of F  may yield even better classifier performance.
We leave detailed examination of the F profile for future study but note informally that
while many tokens with expected focus on I appeared to have H* pitch accents, we also
observed the occurrence of other intonational patterns in which the F maximum of I was
exceeded by the F, maximum of did (e.g., Figures 8, 9, 10) or in which the F, maximum
was delayed (e.g., Figure 11). Human listeners may well be able to recover focus despite
such variability.
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Figure 8: Waveform, spectrogram, and F, contour from excerpt of web file 117.
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Figure 9: Waveform, spectrogram, and F, contour from excerpt of lab recording 327_6.
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Figure 11: Waveform, spectrogram, and F, contour from excerpt of lab recording 327_6.

Rather than interpreting the results as indicating non-relevance of F, we wish to high-
light the contribution of non-F measures, which turned out to be highly predictive. Non-
F,measures, we argue, offer practical benefits for automatic detection of focus. We also
note that many researchers have taken such findings not merely as evidence for the exist-
ence of secondary cues of accent, but as evidence against the pre-eminence of pitch accent
(e.g., Fant et al., 1991; Heldner, 2003; Heldner et al., 1999; Kochanski, 2006; Sluijter &
van Heuven, 1996; among others). Mo (2010) finds that individuals show considerable
variation in which combinations of acoustic measures they use to mark prominence and
these combinations include F to varying degrees.

We propose that the increased duration and especially vowel quality observed in our
data correlate with post-lexical or utterance-level stress. Following the autosegmental-
metrical tradition, stress is phonologically distinct from pitch accent (e.g., Liberman,
1975; Pierrehumbert, 1980), although related by the requirement for pitch accent to align
with utterance-level stress.
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For the second grouping of measures, we observed a tendency for classifiers with
exclusively paradigmatic measures to meet or exceed the performance of exclusively
syntagmatic measures. Again, we emphasize that syntagmatic measures are indeed pre-
dictive; classifiers using exclusively syntagmatic measures achieved accuracies as high as
80.3% and it is entirely possible that inclusion of other syntagmatic measures might have
yielded even better classifier performance. Rather, we highlight the contribution of the
paradigmatic measures, which turned out to be highly predictive.

As described in the Introduction, it is traditionally held that prosodic prominence is
relational or syntagmatic, meaning that prominence is processed relative to the sentence
that is being uttered (e.g., Hyman, 1978; Jakobson et al., 1952; Ladefoged, 1975; Lehiste,
1970; Trubetzkoy, 1939). This explains, among other phenomena, how a word may be
perceived as prominent in either fast or slow speech.

Segmental phenomena such as vowel quality, voice quality and, in some cases, duration
are paradigmatic, meaning that they are processed relative to another possible realiza-
tion. Segmental phenomena, such as the phonological voicing contrast between [p] and
[b] are responsible for meaning-distinguishing minimal pairs like pig and big. There are
no minimal pairs in English, so the reasoning goes, that are distinguished solely by pitch
(e.g., pig with a high tone and pig with a low tone).

Minimal prosodic pairs (or n-tuples) do exist, however, as we’ve seen (cf. 3a, 3b, 3c).
How can we understand these essentially paradigmatic contrasts without also denying the
syntagmatic character of prosodic prominence? Within metrical stress theory, prosody is
hierarchical, and one can speak of prominence at multiple levels. Prominence at the word
level is realized phonologically by stress, and it is possible to distinguish individual words
using stress (e.g., import vs. import). Further, one can make intonational contrasts at the
phrase or utterance level.

Phonologically, then, the difference between two minimal intonational pairs is thus
both syntagmatic—how prosodic elements are grouped and which prosodic element is
most prominent within a grouping—and paradigmatic—how the prosodic structure of one
utterance differs minimally from the prosodic structure of another.

An important source of evidence against uniquely syntagmatic accounts comes from
cases of double focus. Ladd (1991) describes an individual “who used to be able to speak
German well but then had then spent a long time living in Sweden and now spoke good
Swedish but had trouble with German.” Ladd replies to the individual with (23).

(23) That’s what happened to my French.

It used to be good, but then I spent a year in Germany and ended up with good
German, and now whenever I want to speak French I get German interference all
over the place.

Semantically, (23) is a case of double focus, on my and on French. And phonologically, this
focus is being conveyed with prominence. Ladd observes, however, that prominence on my
cannot be purely syntagmatic. It is not the case that my is more prominent than its sister,
French; if anything, French is realized with greater prominence than is my. The necessary
comparison is paradigmatic: (23) is compared to the minimally different realization in (24).

(24)  That’s what happened to my French.

Similarly, measures of prominence on I alone were good unique predictors in the than I
did datasets because the salient contrast was not only syntagmatic, but paradigmatic (i.e.,
between focal and non-focal realizations of I).
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(25)  than [I] ,, did paradigmatic contrast

!
than I [did], [...],

As we’ve noted, the highly predictive paradigmatic measures in our data were also
measures of stress, namely duration and vowel quality. We hypothesize that this is largely
due to the lexico-syntactic class of the focused constituent (i.e., function words tend to be
unaccented unless focused). Ladd’s examples (23, 26) contrast focal and non-focal reali-
zations of the function word my. In our comparatives data, we are contrasting focal and
non-focal realizations of the function word I. It is sufficient for the usually non-prominent
pronoun to indicate prominence by realizing it with even a low degree of prominence.

It is well known that there are important phonological distinctions between function
words and lexical words (e.g., Selkirk, 1996 and references cited therein) and lexical
words may require a greater degree of prominence to signal semantic focus. Ladd offers
another prosodic minimal pair in which the prosodic contrast is realized on the lexical
word butcher. In this well-known example, butcher is understood as an epithet for surgeon
when unfocused, and literally as a butcher when focused.

(26) a. A:Everything OK after your operation?
B: Don’t talk to me about it.
The butcher charged me a thousand bucks! epithet

b. A: Everything OK after your operation?
B: The butcher charged me a thousand bucks! literal

Ladd intuits that the prosodic contrast in (23-24) is not equivalent to the contrast in
(26a-26b). For the pronouns, vowel reduction appears to be sufficient to mark the dis-
tinction, while both of the lexical words have unreduced vowels and a contrast in pitch
appears to be necessary.

In the than I did datasets, the robustness of measures which are non-intonational and
which are extracted only from I reflects the categorical and largely paradigmatic promi-
nence on focused I. A full, unreduced vowel, as indicated phonetically by greater duration
and more extreme formant extrema, is sufficient information to identify the function word
as focused with considerable accuracy. It is likely the case that humans use a combination
of syntagmatic and paradigmatic information, and that the choice is context-dependent.
Mo (2010), much like the Boruta feature selection in this study, finds that listeners tend
to make use of paradigmatic duration and formant measures, but syntagmatic loudness
measures.

The category of focus as it figures in current theory can be characterized as a grammati-
cally mediated correlation between a semantics-pragmatics of contrast and redundancy,
and a phonetics of prominence. The positive results obtained here suggest the feasibility
of constructing explicit numerical models of this correlation using machine learning, and
of testing the predictions of formalized theories of information structure in data collected
in the ‘wild’ of spoken language used on the web.

The web methodology that is detailed in Howell and Rooth (2009) retrieves tokens of
specific lexical strings. In related work, we collected data for several dozen word-string
targets and filtered and transcribed the results (Lutz et al., 2013; Rooth et al., 2013).
Structuring datasets around specific target strings is a limitation, but it is also an advantage
in that it allows machine learning to use specific features in the target. Investigating the
success of the method for other contexts, and generalizing the method to an open-ended
class of contexts for focus realization is a topic for future research.
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