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We present a method of using generalized additive mixed models (GAMMs) to analyze midsagittal 
vocal tract data obtained from real-time magnetic resonance imaging (rt-MRI) video of speech 
production. Applied to rt-MRI data, GAMMs allow for observation of factor effects on vocal tract 
shape throughout two key dimensions: time (vocal tract change over the temporal course of a 
speech segment) and space (location of change within the vocal tract). Examples of this method 
are provided for rt-MRI data collected at a temporal resolution of 20 ms and a spatial resolution 
of 1.41 mm, for 36 native speakers of German. The rt-MRI data were quantified as 28-point semi-
polar-grid aperture functions. Three test cases are provided as a way of observing vocal tract 
differences between: (1) /aː/ and /iː/, (2) /aː/ and /aɪ/, and (3) accentuated and unstressed /aː/. 
The results for each GAMM are independently validated using functional linear mixed models 
(FLMMs) constructed from data obtained at 20% and 80% of the vowel interval. In each case, the 
two methods yield similar results. In light of the method similarities, we propose that GAMMs are 
a robust, powerful, and interpretable method of simultaneously analyzing both temporal and 
spatial effects in rt-MRI video of speech.
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1. Introduction
One of the primary challenges facing speech articulation researchers is obtaining, 
quantifying, and interpreting data that capture both the spatial and temporal complexity of 
speech production. On the one hand, technologies that register flesh point positions (e.g., 
electromagnetic articulometry; EMA) are excellent for capturing articulatory kinematics, 
and the resulting data are readily quantifiable. However, interpretation of these data is 
limited to the kinematics of a set number of flesh points that can physically be accessed 
by the researcher, thus disregarding a large amount of spatial information about vocal 
tract action (e.g., pharyngeal constriction/expansion). On the other hand, speech imaging 
technologies (e.g., real-time magnetic resonance imaging; rt-MRI) yield maximal spatial 
information about the vocal tract. However, creating metrics from the images that are both 
phonetically interpretable and statistically testable is less than straightforward. Moreover, 
even with a suitable technology and analysis method for maximizing spatial information 
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in place, obtaining this information often comes at the cost of temporal information: 
Due to limitations on time, resources, and/or computational power, measurements are 
most commonly carried out at particular ‘magic moments’ of speech segments, e.g., the 
temporal midpoint of a vowel, which neglects the often complex dynamic nature of speech 
(Mücke, Grice, & Cho, 2014).

Almost simultaneously with recent progress in imaging techniques in articulatory 
research, there have been dramatic improvements in statistical methods which now 
increasingly allow for the quantification of continuous data while taking into account 
complex experimental designs with repeated measures on speakers and items. In particular, 
with the advent of generalized additive mixed models (GAMMs), we are now at a point at 
which multi-dimensional data can be subjected to statistical modeling. However, model 
design and the interpretation of the results can be a challenge. In this paper, we explore 
the application of GAMMs to vocal tract aperture functions over time, gleaned from rt-MRI 
video of German vowel productions. We thereby use two different versions of GAMMs in 
order to validate our results and to increase our understanding of how estimated effects 
obtained from GAMMs can be interpreted with regard to vocal tract dynamics. Three 
different test cases (in decreasing order of effect size) are investigated, and the GAMM 
results are independently validated using functional linear mixed models at different time 
points in the target vowel, in order to determine whether the two methods converge on 
similar outcomes.

1.1. Real-time magnetic resonance imaging (rt-MRI)
Recent developments in high-quality, high-speed rt-MRI reconstruction techniques (Fu 
et al., 2012, 2015; Niebergall et al., 2012; Uecker et al., 2010) have made rt-MRI a 
remarkably suitable tool for capturing data related to vocal tract kinematics in speech 
(see Lingala, Sutton, Miquel, & Nayak, 2016 for an overview of challenges associated with 
rt-MRI of speech). Rt-MRI is particularly appealing for studying relatively inaccessible 
articulatory characteristics, such as velum height (Byrd, Tobin, Bresch, & Narayanan, 
2009; Carignan et al., 2019; Martins, Oliveira, Silva, & Teixeira, 2012; Proctor et al., 2013), 
pharyngeal aperture (Carignan, Shosted, Fu, Z.-P., & Sutton, 2015; Shosted, Sutton, & 
Benmamoun, 2012; Tiede, 1996), laryngeal position (Demolin, Hassid, Metens, & Soquet, 
2002; Honda & Tiede, 1998), and even laryngeal configuration (Ahmad, Dargaud, Morin, 
& Cotton, 2009; Moisik, Esling, Crevier-Buchman, Amelot, & Halimi, 2015; Moisik, Esling, 
Crevier-Buchman, & Halimi, 2019). However, unlike articulometry data, rt-MRI video 
frames must first be quantified in some manner before analysis can be carried out. A 
variety of quantification methods has been proposed (see Ramanarayanan et al., 2018 for 
a detailed overview), including (but not limited to) region-of-interest analysis (Lammert, 
Ramanarayanan, Proctor, & Narayanan, 2013; Teixeira et al., 2012; Tilsen et al., 2016), 
grid-based area or distance functions (Barlaz, Shosted, Fu, & Sutton, 2018; Proctor, Bone, 
Katsamanis, & Narayanan, 2010; Zhang et al., 2016), image cross-correlation (Lammert, 
Proctor, & Narayanan, 2010), region-based principal components analysis (Carignan et al., 
2019, 2015), and automated segmentation of individual speech articulators (Eryildirim, 
M.-O., & Berger, M.-O., 2011; Labrunie et al., 2018; Silva & Teixeira, 2015, 2016).

In the current study, we have chosen to quantify the vocal tract using semi-polar grid 
functions that represent the aperture (i.e., distance, diameter) of the vocal tract within the 
midsagittal plane. This particular quantification method was chosen for two reasons, both 
of which are important for maintaining interpretability in the specific use of GAMMs that 
we propose in this paper. First, both the number of grid lines and their relative location 
within the vocal tract remain constant across speakers, items, and conditions. Second, 
although applying a grid is essentially a manner of discretizing the vocal tract, when 
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using a relatively large number of grid lines (in our case, 28), the resulting function is 
a gradient, fine-grained spatial representation of the vocal tract that can be modeled as 
a continuous variable. In this way, we can subject the dynamic evolution of vocal tract 
aperture over time to statistical modeling.

1.2. Generalized additive mixed models and functional linear mixed models
In this paper, we will use two different approaches to generalized additive mixed modeling: 
via smooth-derived random effects (Baayen, Kuperman, & Bertram, 2010; Baayen, Rij, de 
Cat, & Wood, 2016) and via random effects derived from functional principal components 
analysis (Cederbaum, Pouplier, Hoole, & Grevens, 2016; Pouplier, Cederbaum, Hoole, 
Marin, & Greven, 2017).

A generalized additive model (GAM; Hastie & Tibshirani, 1990; Wood, 2006b) is a class 
of statistical models in which the relationships between the response and predictors are 
modeled by non-linear smooth functions. Generalized additive mixed models (GAMMs; 
Wood, 2004, 2006a) are an extension of GAMs as mixed models, in which random 
effects are estimated from a GAM by computing the variances of the so-called ‘wiggly’ 
components of the smooth terms (i.e., the degree of smoothness of the terms). GAMMs 
have previously been used to investigate speech production over time (Baayen, Vasishth, 
Kliegl, & Bates, 2017; Kirkham, Nance, Littlewood, Lightfoot, & Groarke, 2019; Mielke, 
Carignan, & Thomas, 2017; Sóskuthy, 2017; Wieling et al., 2016; Winter & Wieling, 2016) 
and space (Barlaz et al., 2018; Wieling, 2018), to observe the effects of word frequency 
and lexical proficiency on articulation (Tomaschek, Tucker, Fasiolo, & Baayen, 2018), and 
to model spatio-temporal relations in flesh-point kinematics (Tomaschek, Arnold, Bröker, 
& Baayen, 2018). One distinct advantage of employing GAMMs for speech articulation 
research is that they can capture the interaction effects of two different continuous 
variables (such as time and space), using tensor product interaction, which allows the 
smooth coefficients for one variable to vary in a non-linear fashion depending on the 
value of the other variable (Wieling, 2018, p. 102). In this way, GAMMs enable speech 
researchers to investigate how a given articulatory metric (e.g., EMA sensor height; vocal 
tract aperture) is conditioned by both a temporal dimension (e.g., time within a speech 
interval; experimental trial) and a spatial dimension (e.g., location of EMA sensor on the 
tongue; region of the vocal tract).

Functional linear mixed models (FLMMs) are an extension of standard linear mixed 
modeling, in which both the response and random effects are observed over multiple 
points in temporal or spatial location. One method of FLM modeling is sparseFLMM 
(Cederbaum et al., 2016; Pouplier et al., 2017), a non-parametric, spline-based estimation 
technique for the analysis of correlated functional data which are observed irregularly, 
or even sparsely. Means are estimated based on penalized splines, and random effects are 
captured using functional principal component analysis (FPCA), as opposed to deriving 
random effect structures from the smooth terms (Baayen et al., 2010, 2016). Due to 
penalized splines being employed, FLMMs imposes no underlying assumptions about the 
shape and properties of the basis functions apart from an underlying smoothness. The 
sparseFLMM approach is closely related to GAMMs as applied to two-dimensional data, 
e.g., time series data (Baayen et al., 2010, 2016; Scheipl, Staicu, & Greven, 2015; Wieling, 
Montemagni, Nerbonne, & Baayen, 2014).

As previously mentioned, it is possible with GAMMs to model random effects using 
the degree of factor smoothness. In the sparseFLMM approach, using FPCA bases as a 
parsimonious representation of the functional random effects provides an interpretable 
variance decomposition for the random terms in the model, permitting subsequent 
inspection of these random effects. Importantly, the FPCA basis functions are estimated 
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from the data as the eigenfunctions of the estimated covariance of the functional 
random effects (see also Wang, Chiou, & Müller, 2016). GAMMs assume that the error is 
autocorrelated with a specific parametric first-order autoregressive structure; thus, a fixed 
correlation parameter (ρ) must be set as a working criterion by the researcher, although it 
can be estimated directly from the autoregressive structure of the data (see Section 2.4). 
This may lead to incorrect standard errors and thus incorrect inference, since ρ is assumed 
to be constant over the dimension of interest. In contrast, sparseFLMM has the advantage 
of estimating the auto-covariance of the error directly from the data, which allows the  
error to be heteroscedastic and/or to vary non-parametrically over the dimension of 
interest, which gives more reliable inference in this respect compared to GAMMs (for 
discussion, see Pouplier et al., 2017).

In the current study, we thus propose the use of GAMMs for analyzing the conditioning 
effects of both time and space on vocal tract aperture measured from rt-MRI video. 
Exploiting the ability of GAMMs to model the effect of two continuous predictors on the 
response (as proposed by Baayen and colleagues; Baayen et al., 2010, 2016), the use of 
GAMMs that will be demonstrated here allows us to take advantage of both the temporal 
and spatial information provided by rt-MR imaging. However, in order to maintain an 
appropriate degree of circumspection toward the model results, we will employ FLMMs 
as a way of independently validating the GAMM results, in order to observe whether the 
two different methods yield similar interpretations of the data. FLMMs currently allow 
for interpretability of only one of these two factors at a time—e.g., differences in aperture 
over time at a single location in the vocal tract, or differences in aperture throughout 
the vocal tract at a single point in time. Therefore, in order to obtain a representative 
comparison to the GAMM results, two different FLMMs will be created to validate each 
GAM model: FLMMs created to investigate differences in aperture throughout the vocal 
tract will be constructed using data from two different time points (20% and 80% of a 
vowel interval), and the FLMM results will be compared directly to the GAMM results 
observed at the same two time points. In doing so, it is not our intention to compare 
GAMM and FLMM as statistical methods; rather, we use them in a complementary fashion 
in order to gain a comprehensive picture of how rt-MRI data can be analyzed reliably 
using these relatively new statistical methods.

2. Methodology
2.1. rt-MRI, speakers, stimuli, and segmentation
Rt-MRI data at 50 frames per second were collected using a 3T MRI system (Magnetom 
Prisma Fit, Siemens Healthineers, Erlangen, Germany) at the Max-Planck-Institute for 
Biophysical Chemistry (Göttingen, Germany) along with synchronized, noise-suppressed 
audio. The method relies on highly under-sampled radial gradient-echo acquisitions in 
combination with serial image reconstruction by regularized non-linear inversion (Uecker 
et al., 2010). Extending preliminary applications to characterize natural speech at slower 
speed (Niebergall et al., 2012), the current study employs a temporal resolution of 20 ms1 
(9 radial spokes, repetition time 2.22 ms, echo time 1.47 ms, flip angle 5°). Rt-MRI movies 

 1 Methods of reconstructing real-time MRI video sequences at high temporal resolutions have often involved 
a sliding window technique, wherein shifted reconstructions subdivide a longer acquisition time per frame. 
In such cases the ‘true’ resolution is the acquisition time, while the image series has an artificially inflated 
frame rate dependant on the number of subdivisions of the acquisition. However, no such technique is 
employed in the reconstruction method used here, yielding a temporal resolution of the image series (50 
fps) that is ‘self-consistent’ with the acquisition time per frame (20 ms) (Frahm et al., 2014; Iltis et al., 
2015).
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cover a 192 × 192 mm2 field-of-view at 1.41 mm in-plane resolution in a mid-sagittal 
plane of 8 mm thickness.

Data are presented here for 36 native speakers of German (22 female), aged between 
19 and 35 years (μ = 24.36, SD = 4.22). The corpus consists of ≈300 German lexical 
items, balanced for coda composition over a wide range of phonetic contexts (e.g., vowel 
quality, stops versus obstruents, etc.). During the MRI scanning sessions, the words 
appeared on a computer screen, as reflected on a mirror placed inside the scanner. The 
words appeared in a variety of carrier phrases constructed to vary the stress placement 
of the word in three primary conditions: accentuated, de-accentuated, and neutral. The 
noise-suppressed audio was used for segmentation of the vowel in each word, which was 
carried out manually in Praat (Boersma & Weenink, 2017) via inspection of the acoustic 
waveform and corresponding broadband spectrogram.

2.2. Generating vocal tract aperture functions from rt-MRI video
The MATLAB functions used to process the MR images and generate the vocal tract (VT) 
aperture values are available at: https://github.com/ChristopherCarignan/MRI-analyses. 
The specific methodological steps that we use to generate the VT aperture functions are 
not necessary for application of the GAMM method itself—any similar aperture function 
will do (see, e.g., Narayanan et al., 2014 and Raeesy, Rueda, Udupa, & Coleman, 2013 
for alternative solutions)—nor are they central to the goal of our paper, which is to 
promote and illustrate the application of GAMMs to changing aperture functions over 
time. However, for the sake of clarity and methodological transparency, we outline in this 
section the specific processing methods used to create our aperture functions. We refer 
the reader to the documentation provided in the MATLAB functions for further details. 
Generation of VT aperture functions was carried out in several steps, each of which is 
described in the following sections.

2.2.1. Image registration
First, all images are registered in order to control for possible changes in the angle of 
the speaker’s head within the scanner.2 Image registration is performed by creating a 
region of interest (RoI) in the upper portion of the head—i.e., the pixel rows extending 
vertically from ≈ the tip of the nose. Since it can be assumed that any structures in this 
portion of the head will remain internally stable, any observed movement within the RoI 
is presumed to be due to movement of the head. Accordingly, each image is aligned to 
the first image of the recording by estimating rigid transformation matrices of RoI-masked 
images with the imregtform function and applying these geometric transformations to 
the original images with the imwarp function.

2.2.2. Semi-polar grid
After image registration, a semi-polar grid consisting of 28 lines is overlaid from the 
glottis to the anterior edge of the alveolar ridge (left-most image in Figure 1).3 The choice 
of 28 grid lines, specifically, is somewhat arbitrary and was reached after manual trial 
and error, with the final number representing a balance between sufficient coverage 
throughout the vocal tract and the processing time required for computing the aperture 

 2 Changes associated with head movement in our data were relatively rare, were small in magnitude, and 
usually corresponded to the production of accentuated words.

 3 Labial configuration was not considered for the purposes of this study, since protrusion/retraction of the 
lips would result in a difference in the number of grid lines that would need to be considered for different 
items and contexts. Accurate interpretation of the models presented in this study requires that the number 
of grid lines and their location in the vocal tract be constant.

https://github.com/ChristopherCarignan/MRI-analyses
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values in each MR image.4 The semi-polar grid is applied to the vocal tract semi-manually, 
in the following manner. The user selects the location of the glottis, the velopharyngeal 
port, the anterior edge of the alveolar ridge, and a location of air within the oral cavity. 
The midpoint of a line extending from the glottis line to the alveolar ridge line—a point 
located in the genioglossus muscle in every case—is then used as the origin of a polar grid 
of 21 radii extending from the pharynx (parallel to the genioglossus origin) to the alveolar 
ridge. The remaining 7 lines are then set equidistantly from the end of the polar grid to 
the glottis (left image in Figure 1). The grid line closest to the speaker’s velopharyngeal 
port is logged for subsequent spatial normalization across speakers (see Section 2.3). 
The grid line closest to the air selection is used to compute a threshold of pixel intensity 
representing the difference in image luminosity between flesh and air; the threshold is 
defined as 25% of the range of pixel intensities along this line and is used in the estimation 
of vocal tract aperture along each grid line (see Section 2.2.4).

2.2.3. Air-tissue boundary detection
For each MR image in a speaker’s recording, the posterior and/or superior boundary 
of the vocal tract along each grid line is located semi-automatically and the grid lines 
are truncated/terminated at this boundary (center image in Figure 1). The air-tissue 
boundary along each grid line is determined based on a weighting of three factors; two 
representing degree of pixel intensity change and one representing prior assumptions. For 
each grid line, the first derivative of the pixels falling along the line extending from its 
central position outward (e.g., from genioglossus through the pharynx) is first calculated. 
The maximum of this differential signal is defined as the most rapid change from low 
intensity pixels (air) to high intensity pixels (flesh); given the direction/orientation of 
the line (i.e., extending outward from an anterior and/or inferior location within the 
vocal tract), the point along the grid line corresponding to this maximum is interpreted 
as an estimate of the location of the posterior and/or superior air-tissue boundary of 
the vocal tract (i.e., the point at which air meets flesh along the posterior/superior edge 
of the vocal tract). Two values associated with this differential peak are logged to be 
used in the weight calculation: the value of the peak (i.e., the magnitude of change) 
and the prominence of the peak (i.e., the relative magnitude of the peak in relation to 
neighboring peaks). In order to generate the prior assumption, the user manually selects 

 4 Consideration of the time required to analyze images was a non-negligible factor in our analysis choices, 
since our data set contains an average of 23,804 MRI video frames per speaker (SD = 2,967), totalling 
856,944 images and 24 million grid lines to analyze.

Figure 1: Vocal tract grid line placement (left image), posterior/superior boundary detection 
(center image), and aperture estimation (right image) from large aperture in yellow to small 
aperture in red.



Carignan et al: Analyzing speech in both time and space Art. 2, page 7 of 26

the posterior/superior edge of the vocal tract for each grid line in a representative frame 
(the ‘base assumption’).

Finally, for each frame in the MRI video, the air-tissue boundary along each grid line 
extending from the glottis to the hard palate5 is calculated automatically by selecting the 
appropriate peak in the first derivative of the intensity values, as described above, using 
a weighting that penalizes for small peak magnitude, small peak prominence, and large 
distance from the base assumption. The resulting 28-point boundary is then smoothed 
using a Savitzky-Golay second-order polynomial convolutional filter in order to reduce 
possible errors in the automatic peak selection, under the assumption that the air-tissue 
boundary is relatively contiguous throughout the vocal tract—i.e., the vocal tract does not 
contain structures that would introduce an abrupt change in the spatial location of this 
boundary within the midsagittal plane.

2.2.4. Aperture estimation
After the boundaries are located in each MR image, the aperture of the vocal tract within 
the boundary-terminated grid lines is estimated using a thresholding technique. The number 
of pixels along each grid line that have an intensity value below the pre-defined air/flesh 
boundary threshold (see Section 2.2) is calculated and multiplied by the in-plane voxel 
resolution (1.41 mm). The result is a 28-point function corresponding to the midsagittal 
aperture (in mm) of the vocal tract from the glottis to the end of the alveolar process. An 
illustration of this VT aperture function is shown in the right image in Figure 1, in which 
aperture is denoted by range of color from yellow (large aperture, i.e., VT expansion) to 
red (small aperture, i.e., VT constriction). Starting from the glottis, we can observe: small 
aperture at the larynx, followed by increased aperture in the hypo-pharynx just above the 
larynx, followed by slightly decreased aperture at the epiglottis, followed by expansion at the 
tongue root in the hyper-pharynx, followed by decreased aperture between the velum and 
tongue dorsum, followed by intermediate aperture (i.e., orange lines) along both the soft and 
hard palate, followed finally by very small aperture corresponding to an alveolar constriction.

2.3. Normalization procedures
The current study uses GAMMs to observe how a variety of factors might condition changes 
in aperture throughout the vocal tract over the time course of the vowel. However, before 
submitting the data to the GAMMs, both of these dimensions (time and space, i.e., grid 
line location within the VT) were normalized. Time was normalized in a linear fashion 
for each token (scale: 0–1). Non-linear spatial normalization was applied to VT grid line 
locations using spline-based landmark registration, in the following manner. First, the grid 
line corresponding to the location of the velopharyngeal port (henceforth, velum) was 
located for each speaker (see Section 2.2.2). Second, for the purposes of interpretability, 
six major locations in the vocal tract were chosen and considered as equidistant along a 
0–1 scale: glottis (0), hypo-pharynx (0.2), hyper-pharynx (0.4), velum (0.6), palate (0.8), 
and alveolar ridge (1). Finally, the 28 grid line scale was transformed in a non-linear 
fashion for each speaker by fitting a spline between the sets of coordinates [1, x, 28] 
(where x = the grid line at the velum) and [1, 16.8, 28] (i.e., 28 * 0.6 = 16.8).6 The 

 5 Since the images are registered to account for head movement, the hard palate can be assumed to remain 
stable throughout the recording. Thus, the manual boundary selections for the grid lines along the hard 
palate are held constant throughout the entire recording (rather than estimated algorithmically) to reduce 
processing time; only the boundaries for grid lines extending from the glottis to the hard palate are allowed 
to vary, in order to capture differences in vocal tract shape due to, e.g., velum lowering or constriction/
expansion of the posterior pharyngeal wall (Carignan et al., 2015).

 6 Since only three coordinate points were used, the spline fit was essentially a second-order polynomial fit in 
each case.



Carignan et al: Analyzing speech in both time and spaceArt. 2, page 8 of 26  

range of integers 1:28 was then transformed using the coefficients of the fitted spline, 
resulting in a grid line scale in which 1 = glottis, 16.8 = velum, and 28 = alveolar 
ridge for each speaker, with speaker-specific non-linear transformations between these 
three points.7 Examples of VT aperture functions before and after both the largest and the 
smallest degrees of this non-linear normalization are shown in Figure 2, for two speakers’ 
productions of /aː/ in bat “(I) asked.”

It is important at this point in time to discuss two caveats associated with the 
normalization procedures performed on the data presented here. First, as is the case 
with any similar time normalization, the 0–1 linear temporal scaling performed in this 
study neglects inherent differences in duration between speech segments. Thus, when 
investigating reported significant effects in the temporal dimension, the researcher must 
of course exercise appropriate caution in interpreting the precise nature of these effects. 
Second, the six equidistant vocal tract locations are not necessarily equidistant in reality. 
While we believe that they are reasonable approximations—the grid layout displayed 
in Figure 1 is a fair representation of the general grid layout across speakers, and these 
vocal tract locations are each ≈5–6 grid lines apart from one another in the figure—
equidistance has been imposed upon these locations for ease of interpretation. We do not 
claim that they are necessarily accurate estimations of absolute distance between regions of 
the vocal tract (and, thus, they should not be interpreted as such by the reader). Rather, 
they should be considered as relative landmarks and interpretations of significant effects 
should be made accordingly.

2.4. GAMM construction
The data and R (R Core Team, 2017) code used to construct the GAMMs and FLMMs, as 
well as generate the results and figures presented in this paper, are available at: https://
github.com/ChristopherCarignan/journal-articles/tree/master/LabPhon_rtMRI-GAMM. 

 7 Each of the models presented in this study was also tested without landmark-based transformation of the 
28 grid lines. Differences in the results between the two methods were negligible in each case, since the 
velum grid line was never very different from 16.8, ranging from 15 to 17 for all speakers (μ = 15.81, SD 
= 0.67). The largest transformation (i.e., velum at grid line 15) yielded a quadratic coefficient of merely 
–0.0099, indicating only minor deviation from a straight line.

Figure 2: Vocal tract aperture function examples for productions of /aː/, both with (blue, dashed 
line) and without (red, solid line) normalization. The left plot is a VT aperture function for a 
speaker who required the largest degree of normalization (velum at grid line 15); the right plot 
is a VT aperture function for a speaker who required the smallest degree of normalization 
(velum at grid line 17).
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GAMMs were constructed using the bam function of the mgcv package (Wood, 2019). 
Autocorrelation in the VT aperture functions is expected for the dimensions of both 
time (speech articulators move continuously over time) and space (the vocal tract 
is not composed of discrete structures), resulting in autocorrelation of the model 
residuals and therefore violating the model assumption of independent errors. The bam 
function includes an autoregression (AR) feature intended to reduce autocorrelation in 
one dimension, employing a user-supplied ρ parameter. It is suggested that ρ should 
correspond to the autocorrelation function (ACF) value at lag = 1, i.e., ACF[2], an 
approach that we have followed here. For the current study, the vocal tract aperture 
grid lines were chosen as the dimension in which autocorrelation was reduced using this 
AR feature, using the first VT grid line (i.e., the glottis) of each token as the ‘AR.start’ 
commencement point. However, when the data are ordered by time and sub-ordered by 
grid line at each time point (as is the case for our data), the AR.start parameter set to 
track the onset of the grid lines at each time point effectively captures autocorrelation of 
the residuals in both dimensions.8 Models were constructed using the te-constructor to 
fit the non-linear interaction between the temporal and spatial dimensions. Full random 
effects were included for speaker and random intercepts were included for word. The 
number of knots (k parameter) for all smooths was chosen via model diagnosis using 
the gam.check() function; the marginal basis dimensions in the FLMMs was equal to 
the number of knots in the random smooths of the GAMMs (i.e., 4), in order to maintain 
similar model construction. The R code for the full GAMM construction is shown in 
Listing 1.

Listing 1: Structure of generalized additive mixed models used in the current study

# Main effect of the predicting factor on VT aperture:

bam(aperture ~ factor

# Tensor product interaction to separate the effect of the predictor

#  from the effects of normalized time and space(i.e., VT grid line):

+ te(time, gridline, k=15)

+ te(time, gridline, by=factor, k=15)

# Random smooths(i.e., full random effect) to account for

# non-linear interactions between speaker and time|space:

+ s(time, speaker, bs=”fs”, m=1, xt=”tp”, k=4)

+ s(gridline, speaker, bs=”fs”, m=1, xt=”tp”, k=4)

# Random intercepts by word:

+ s(word, bs=”re”, m=1),

#  AR.start to control for correlation throughout the vocal tract.

#  Since the data are ordered by time(and sub-ordered by gridline),

#  AR.start captures autocorrelation of residuals in both dimensions:

AR.start=gridstart, rho=valRho, method=”fREML”, data=mridata)

 8 We would like to thank an anonymous reviewer for bringing this feature to our attention.
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This model structure was used to investigate possible articulatory differences in three 
distinct phonetic contexts, each with different expectations for their effect on vocal tract 
shaping over time:

1. Difference between monophthongs /aː/ and /iː/: We expect maximal spatial differ-
ences (i.e., these vowels place maximally distinct constraints on tongue shape) but 
minimal temporal differences (i.e., they are both monophthong vowels).

2. Differences between monophthong /aː/ and diphthong /aɪ/: We expect spatial dif-
ferences and temporal differences to occur concomitantly, since the tongue shapes 
are expected to be similar earlier in the vowel interval (i.e., [a]–[a]) and to diverge 
later in the vowel interval (i.e., [a]–[ɪ]).

3. Differences between accentuated and neutrally stressed /aː/: We expect stress to 
manifest in articulatory differences, but we do not necessarily have any a priori as-
sumptions as to what those differences may be.

In order to validate the GAMM results for each context, separate FLMM models were 
created at 20% and 80% of the vowel interval using the sparseFLMM function of the 
sparseFLMM package (Cederbaum, 2017). These results will be compared to the GAMM 
results at the same time points to determine whether the two methods converge on similar 
interpretations of the data.

3. Results
3.1. Monophthongs: Differences between /aː/ and /iː/
In order to investigate differences between the monophthongs /aː/ and /iː/, the following 
subset of the corpus was created from neutrally stressed (i.e., unaccentuated) lexical items 
that include these vowels and are preceded by one of /b, d, t, ʀ/ and followed by /t/: 
bat /baːt/, Rate /ʀaːtə/, Tat /taːt/, biete /biːtə/, Rita /ʀiːta/, Dieter /diːtɐ/. This subset 
yielded a total of 216 observations and 46,844 data points (29,932 for /aː/, 16,912 for 
/iː/) across the 36 speakers. GAMM heatmaps of vocal tract aperture for /aː/ and /iː/ 
are shown in Figure 3; these heatmaps were created using the fvisgam function of 
the itsadug R package (van Rij, Wieling, Baayen, & van Rijn, 2017). In these heatmaps, 
small aperture (i.e., VT constriction) is denoted by the red end of the color scale, and 

Figure 3: GAMM heatmaps of vocal tract aperture (z-axis) over time (x-axis) throughout the vocal 
tract (y-axis), for neutrally stressed /aː/ (left) and /iː/ (right). Aperture (mm) is denoted by color 
grade, and regions of equidistant change (here, Δ2 mm) are denoted by black lines.
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large aperture (i.e., VT expansion) is denoted by the blue end of the color scale. The VT 
shapes implied by these heatmaps are congruent with our general knowledge of these two 
vowels: /aː/ is produced with expansion along the palate and constriction throughout 
the pharynx, suggesting a lowered and retracted tongue posture, while /iː/ is produced 
with constriction along the palate and expansion throughout the pharynx, suggesting a 
raised and advanced tongue posture. These articulatory configurations are maximally 
distinct, as predicted. Furthermore, the distinction is enhanced after ∼ 50% of the vowel 
interval: In this latter portion of the vowel, /aː/ becomes even more [aː]-like (greater 
palatal expansion and pharyngeal constriction), while /iː/ becomes even more [iː]-like 
(greater palatal constriction and pharyngeal expansion).

While these descriptive heatmaps are useful for understanding the dynamic articulations 
of these two vowels, it is perhaps more informative (and more advantageous for a phonetic 
interpretation) to observe the effect of the context itself (here, vowel quality) on VT 
aperture over time and space. Figure 4 displays the differences between /aː/ and /iː/, in 
other words the differences between the two heatmaps shown in Figure 3. This difference 
heatmap of Figure 4, as well as all similar difference heatmaps in the current study, 
were created using the plot_diff2 function of the itsadug R package. In this figure, the 
differences shown are for /aː/ in comparison to /iː/. Differences that are considered to be 
significant at α = 0.05 are shown in colored areas (i.e., shades of red or blue), while non-
significant differences are shown in opaque/dark areas. Contours of equidistant change 
are denoted by black solid lines (similar to topographic maps), and confidence interval 
(CI) bands for each contour are denoted by red dotted lines (lower CI) and green dotted 
lines (upper CI). For example, the red portion that extends from the bottom of the map up 
to the red CI for the –2 mm contour is considered a region of significant difference, the 

Figure 4: GAMM heatmap of vocal tract aperture (z-axis) over time (x-axis) throughout the vocal 
tract (y-axis), for the difference between neutrally stressed /aː/ and /iː/. Aperture difference 
(mm) is denoted by color grade, regions of equidistant change (here, Δ2 mm) are denoted by 
black solid lines, and 95% confidence interval bands are denoted by red and green dotted 
lines. Significant differences (α = 0.05) are denoted by colored areas (significant) versus opaque 
areas (non-significant). Vertical dashed lines denote 20% and 80% of the vowel interval, for 
comparison with FLMMs at the same time points (Figure 6).
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opaque region extending from the red CI for the –2 mm contour to the green CI for the 
2 mm contour is considered a region of non-significant difference, and the blue portion 
that extends from the green CI for the 2 mm contour to the top of the map is considered 
a region of significant difference.

The difference heatmap suggests that, in comparison to /iː/, /aː/ is produced with 
greater constriction from the glottis to the velum and greater expansion from the velum 
through the alveolar ridge; the aperture is similar for both vowels at the velum, which 
is consistent with evidence that the ‘pivot’ point of lingual variation is around the 
uvular region (Iskarous, 2005). Moreover, the regions of greatest difference between the 
two vowels are in the hyper-pharynx (most saturated reds in the heatmap) and in the 
middle/anterior portion of the palate (most saturated blues in the heatmap). Finally, the 
differences between the two vowels become more exaggerated in the second half of the 
vowel interval.

A global summary of the model can be obtained using the standard summary() function, 
as shown in Table 1. Additionally, the adjusted R2 of the model (not shown in Table 1 but 
included in the summary output) reveals that 74.5% of the total variance is explained by 
the model. The model summary provides separate statistics for the parametric coefficients 
(i.e., linear effects) and the smooth terms (i.e., non-linear effects).9 In this model, /aː/ was 
chosen as the reference level; thus, the model intercept shows that the average aperture of 
/aː/ (throughout the entirety of both the vowel duration and the vocal tract) is 6.11 mm. 
By comparison, the vowel /iː/ is produced with relatively larger average aperture (1.32 
mm more, rendering an estimate of 7.43 mm), although the difference is not significant 
(p = 0.25). With regard to the smooth terms, it is clear that the inclusion of each of the 
non-linear fixed effects and non-linear random effects is necessary for the model. Thanks 
to the visualizations provided in Figures 3 and 4 and the corresponding effects already 
discussed above, the interpretations of these smooth terms are relatively straightforward: 
The vowel articulations become enhanced throughout the vowel duration (smooth term 
1), with /aː/ becoming more [aː]-like and /iː/ becoming more [iː]-like over time (smooth 
term 2), with inter-speaker differences over time (smooth term 3) and throughout the 
vocal tract (smooth term 4), as well as overall differences across words (smooth term 5).

The random smooths can be visualized by selecting the number of the smooth term 
in the regular plot() function, e.g., plot(m1.rho,select=4) for the by-speaker 
vocal tract smooth. Figure 5 displays the by-speaker random smooths over time (left 

 9 In the results for the smooth terms, ‘Ref.df’ is the number of degrees of freedom used in hypothesis testing, 
while ‘edf’ is an estimate of the number of parameters required to create the smooth (Wieling, 2018, p. 90).

Table 1: Summary of the GAMM created to compare neutrally stressed /aː/ and /iː/.

A. parametric coefficients Estimate SE t-value p-value

(Intercept) 6.1060 0.8908 6.8544 <0.0001

vowel-iː 1.3240 1.1446 1.1568 0.2474

B. smooth terms edf Ref.df F-value p-value

te(time.norm,gridline.norm) 69.5238 82.1682 97.2703 <0.0001

te(time.norm,gridline.norm):vowel-iː 58.1370 68.1674 424.6944 <0.0001

s(time.norm,speaker) 17.3271 143.0000 0.2401 <0.0001

s(gridline.norm,speaker) 119.5418 143.0000 26.7847 <0.0001

s(word) 3.9914 4.0000 367.2035 <0.0001
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plot) and throughout the vocal tract (right plot). With respect to the by-speaker random 
smooth over time, although the smooth term is revealed as significant, its contribution 
to the model is minimal (evidenced by the small F-value associated with the smooth 
term); because of this, the by-speaker curves have little to no ‘wiggliness.’ In contrast, 
the by-speaker random smooth over space (i.e., throughout the vocal tract) has a much 
larger contribution to the model, reflected by both the F-value and the difference in curve 
shapes across speakers (especially around the glottis and in the lower pharyngeal region, 
i.e., grid lines 1–5). These differences could reflect inter-speaker variation with regard to 
articulation, physical morphology, changing larynx height, and/or the accuracy of the 
automatic aperture estimations.

As mentioned in Section 2.4, we now compare the GAMM results to FLMMs created 
for 20% and 80% of the vowel interval. These static time points are displayed as vertical 
dashed lines in Figure 4 (and all similar figures throughout the manuscript). In order for 
the two methods to converge on similar results, we expect the FLMMs at both of these 
time points to show evidence of greater pharyngeal constriction for /aː/ compared to 
/iː/, but greater palatal constriction for /iː/ compared to /aː/, with similar aperture for 
both vowels at/around the velum. Additionally, we expect the FLMM created with data 
from 80% of the vowel interval to show greater articulatory differences between the two 
vowels, in comparison to the FLMM created with data from 20% of the vowel interval.

The results for the FLMMs created to test for differences between /aː/ and /iː/ at these 
two time points are shown in Figure 6. The fitted model for /aː/ is displayed in the 
red solid line and the fitted model for /iː/ is displayed in the purple dash-dot line; 95% 
confidence intervals are denoted by ribbons surrounding the fitted means. At the 20% 
time point, /aː/ is produced with constriction at the glottis, followed by slight expansion 
in the hypo-pharynx and slight constriction in the hyper-pharynx, followed by increasing 
expansion up to the palate, followed by increasing constriction up to the alveolar ridge. 
This aperture profile is in consonance with the profile shown in the aperture heatmap 
for /aː/ at 20% of the vowel interval, shown above in Figure 3 (left plot). By contrast, 
/iː/ is produced with expansion throughout the pharynx with the maximum aperture 
located between the hypo- and hyper-pharynx, followed by a relatively linear decrease in 
aperture from this maximal pharyngeal expansion up to the alveolar ridge. This aperture 
profile is also in consonance with the profile shown in the aperture heatmap for /iː/ at 
20% of the vowel interval (Figure 3; right plot). With regard to differences between the 
two vowels: /aː/ displays a smaller aperture than /iː/ throughout the entire pharynx, i.e., 
from the glottis to the velum, where the aperture for the two vowels converges on ≈7 mm 

Figure 5: Visualization of by-speaker factor smooths over time (left plot) and space (right plot) in 
the GAMM created to compare neutrally stressed /aː/ and /iː/.

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4
6

time.norm

s
(t

im
e
.n

o
rm

,s
p

e
a

k
e

r,
1

7
.3

3
)

0 5 10 15 20 25

−
4

−
2

0
2

4
6

gridline.norm

s
(g

ri
d

lin
e
.n

o
rm

,s
p

e
a

k
e

r,
1

1
9

.5
4

)



Carignan et al: Analyzing speech in both time and spaceArt. 2, page 14 of 26  

(averaged over all speakers). Anterior to the velum, /aː/ displays a larger aperture than 
/iː/ up to and including the alveolar ridge. The regions of greatest difference between 
the two vowels are the hyper-pharynx and the palate. Thus, the FLMM results are in 
agreement with the GAMM results at 20% of the vowel interval, both with regard to 
the articulatory configurations of the two vowels and with regard to the articulatory 
differences and similarities between them.

At the 80% time point, the VT aperture profiles for both vowels are similar to those 
observed at the 20% time point, only more exaggerated: Areas of constriction are more 
constricted and areas of expansion are more expanded. These results are in agreement 
with the respective GAMM aperture profiles of these two vowels shown above in Figure 3. 
Given the differences in lingual shape between the two vowels, these exaggerated aperture 
profiles result in even greater differences between /aː/ and /iː/ at 80% of the vowel 
interval in comparison to 20% of the vowel interval, with the areas of greatest difference 
located at the hyper-pharynx and the palate. Thus, the FLMM results are in agreement 
with the GAMM results at 80% of the vowel interval, both with regard to the articulatory 
configurations of the two vowels and with regard to the articulatory differences and 
similarities between them.

3.2. Diphthongs: Differences between /aː/ and /aɪ/
Although the similarities between the GAMM and FLMM results for /aː/ and /iː/ are 
encouraging, it is expected that these two vowels should yield large effects due to the 
distinct (and opposing) articulatory constraints that the vowels place on tongue posture. 
Thus, it is not surprising that both models converge on similar results, since we should 
expect such large effects to be detected and revealed by both models. Therefore, perhaps 
a more demanding test is to compare the model results for differences between /aː/ and 
/aɪ/, for which we expect similar aperture profiles at the beginning of the vowel but 
distinct aperture profiles at the end of the vowel.

In order to investigate differences between the monophthong /aː/ and the diphthong 
/aɪ/, the following subset of the corpus was created from neutrally stressed (i.e., 
unaccentuated) lexical items that include these vowels preceded by a labial /b, v/ and 
followed by an alveolar /n, t/: bahne /baːnə/, bat /baːt/, wate /vaːtə/, weine /vaɪnə/, 
weinte /vaɪntə/, weihte /vaɪtə/. This subset yielded a total of 216 observations and 54,628 
data points (28,000 for /aː/, 26,628 for /aɪ/) across the 36 speakers. Figure 7 displays 
the results for the GAMM created to test for differences between /aː/ and /aɪ/. In this 
figure, the differences shown are for /aː/ in comparison to /aɪ/. The heatmap suggests 
that, overall, /aː/ is produced with more constriction throughout the pharynx and more 
expansion throughout the palate, in comparison to /aɪ/. These articulatory distinctions 
are evidence of a more retracted and lowered tongue position for /aː/ versus /aɪ/, similar 

Figure 6: Results for the FLMM created to compare vocal tract aperture (y-axis) throughout the 
vocal tract (x-axis) between /aː/ (red, solid) and /iː/ (purple, dash-dot) at 20% and 80% of the 
vowel interval, with 95% confidence interval bands shown for both groups.
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to those observed for /aː/ versus /iː/ (Figure 4), but the magnitude of the distinction 
is smaller for /aː/–/aɪ/ (absolute difference up to ≈ 7 mm) than for /aː/–/iː/ (absolute 
difference up to ≈ 13 mm). Although these differences are evidenced from the beginning 
of the vowel interval, there is a clear dynamic component to the pattern observed in 
Figure 7. The articulatory distinction is relatively minor early in the vowel interval and 
gradually becomes stronger as time unfolds, as the tongue moves toward the [ɪ] target at 
the end of the /aɪ/ interval—i.e., the differences increase in a relatively constant manner 
over time, reaching the most saturated blues and reds at the vowel offset.

The GAMM summary is provided in Table 2. 78.6% of the total variance is explained 
by the model. With regard to the parametric coefficients, the results reveal that /aɪ/ is 
produced with slightly smaller overall vocal tract aperture (μ ≈ 6.09 mm) compared to 
/aː/ (μ ≈ 6.54 mm). With regard to the smooth terms, the results are as expected: The 
vocal tract aperture changes over time (smooth term 1), but in different ways for the two 
vowels (smooth term 2), with by-speaker differences over time (smooth term 3) and space 
(smooth term 4), as well as overall differences across words (smooth term 5). Inspection 
of the random smooths (Figure 8) reveals a greater degree of inter-speaker variation 
compared to the /aː/–/iː/ GAMM (also evidenced by the larger F-values associated with 
the by-speaker random smooths in the /aː/–/aɪ/ model compared to the /aː/–/iː/ model). 
In particular, differences in by-speaker curve shape over time can now be observed (left 
plot). Interestingly, there is more inter-speaker variation in curve shape for the first half 
of the vowel interval compared to the second half, suggesting that the articulatory target 
for the [a] element of /aɪ/ is less consistent/precise across speakers in comparison to the 
articulatory target for the [ɪ] element.

Figure 7: GAMM heatmap of vocal tract aperture (z-axis) over time (x-axis) throughout the vocal 
tract (y-axis), for the difference between neutrally stressed /aː/ and /aɪ/. Aperture difference 
(mm) is denoted by color grade, regions of equidistant change (here, Δ2 mm) are denoted by 
black solid lines, and 95% confidence interval bands are denoted by red and green dotted 
lines. Significant differences (α = 0.05) are denoted by colored areas (significant) versus opaque 
areas (non-significant). Vertical dashed lines denote 20% and 80% of the vowel interval, for 
comparison with FLMMs at the same time points (Figure 9).
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The GAMM results for /aː/–/aɪ/ differences lead to very different predictions for the 
FLMMs created at 20% and 80% of the vowel interval. At 20%, the GAMM suggests that 
there is little to no pharyngeal difference between the two vowels—the heatmaps suggest 
only a marginally significant difference between /aː/ versus /aɪ/ at two locations in the 
pharynx—and slightly greater expansion in /aː/ from the velum through the alveolar 
ridge (≈1 mm difference). At 80%, we expect relatively larger differences between the 
two vowels (i.e., more pharyngeal constriction and palatal expansion for /aː/ versus /aɪ/), 
but similar VT apertures at the glottis and at the velum, where the GAMM suggests no 
significant differences between /aː/ and /aɪ/. The results for the FLMMs created to test 
for differences between /aɪ/ and /aː/ at these two time points are shown in Figure 9. 
At the 20% time point, both vowels are produced with aperture profiles similar to the 
description provided above for /aː/ in Figure 6. The overlapping confidence intervals 
from the glottis to midway between the hyper-pharynx and the velum reveal no difference 
in aperture between the two vowels throughout the pharynx, suggesting that the FLMM 
is perhaps slightly more conservative in this region than the GAMM, which resulted in 
marginally significant differences in the pharynx at this time point. However, the FLMM 
confidence intervals diverge posterior to the velum, while the GAMM suggests that the 
difference between the two vowels is only significant anterior to the velum, suggesting 
that the GAMM is perhaps slightly more conservative in this region than the FLMM. 
Nevertheless, both models suggest significant differences in aperture between the two 
vowels from the velum through the alveolar process, suggesting that /aɪ/ is produced 
anterior to the velum with slightly more constriction than /aː/ (≈1 mm in both models). 

Table 2: Summary of the GAMM created to compare neutrally stressed /aː/ and /aɪ/.

A. parametric coefficients Estimate SE t-value p-value

(Intercept) 6.5358 0.3690 17.7108 <0.0001

vowel-aI –0.4451 0.1844 –2.4138 0.0158

B. smooth terms edf Ref.df F-value p-value

te(time.norm,gridline.norm) 88.2324 105.2958 74.8627 <0.0001

te(time.norm,gridline.norm):vowel-aI 69.3682 83.9685 73.1307 <0.0001

s(time.norm,speaker) 61.5039 143.0000 1.1402 <0.0001

s(gridline.norm,speaker) 120.6538 143.0000 44.1088 <0.0001

s(word) 3.8240 4.0000 21.3529 <0.0001

Figure 8: Visualization of by-speaker factor smooths over time (left plot) and space (right plot) in 
the GAMM created to compare neutrally stressed /aː/ and /aɪ/.
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Thus, the FLMM results are generally in agreement with the GAMM results at 20% of the 
vowel interval, both with regard to areas of significant differences in the vocal tract and 
with regard to areas of similarity.

At the 80% time point, the shape of the VT aperture profile for /aː/ is similar to the profile 
seen at 20% of the vowel interval, albeit with slightly more exaggerated characteristics 
similar to the differences observed for /aː/ in Section 3.1 (Figure 6). However, the 
aperture profile for /aɪ/ at 80% of the vowel interval is substantially different than at 
20%: There is more expansion along the pharynx, but less expansion along the palate. 
The relatively flattened VT aperture profile suggests that the [ɪ] element of the diphthong 
is somewhat centralized, produced with a fairly similar degree of vocal tract aperture 
from the pharynx through the palate, ranging from around 6 to 8 mm. This articulatory 
change in /aɪ/ from 20% to 80% of the vowel interval results in significant differences 
between /aː/ and /aɪ/ late in the vowel, in which /aɪ/ has less constriction at the pharynx 
but greater constriction at the palate, in comparison with /aː/. Additionally, there are no 
significant differences between the two vowels at the glottis and at/around the velum. 
Thus, the FLMM results are in agreement with the GAMM results at 80% of the vowel 
interval, both with regard to areas of significant differences in the vocal tract and with 
regard to areas of similarity.

3.3. Stress: Differences between accentuated and neutral vowels
In Section 3.1 we observed how GAMMs can capture large differences in vocal tract shape; 
in Section 3.2 we observed how GAMMs can capture both similarities and differences in 
dynamic vocal tract shaping over time. However, in both of these cases, the expectations 
were clear with regard to what we should expect the results to look like, and the results 
indeed confirmed the expectations. In the final test case for using GAMMs to analyze real-
time MRI video of speech, we will investigate the possible effect of stress/accentuation on 
VT aperture of /aː/. As with the previous two test cases, we expect to observe an effect 
of the condition. However, unlike the previous two cases, we do not necessarily have any 
clear expectations for what that effect might be.

In order to investigate differences between accentuated and neutrally stressed (i.e., 
unaccentuated) /aː/, the following subset of the corpus was created from lexical 
items that include /aː/ followed by an alveolar consonant: ahnde /ʔaːndə/, ahnte 
/ʔaːntə/, sahnst /zaːnst/, sahnt /zaːnt/, sahst /zaːst/. This subset yielded a total of 377 
observations and 120,568 data points (accentuated: 69,580, neutral: 50,988) across the 
36 speakers. Figure 10 displays the results for the GAMM created to test for differences 
between accentuated (“A”) and neutral (“N”) productions of /aː/. In this figure, the 
differences shown are for accentuated /aː/ in comparison to neutral /aː/. The heatmap 
suggests that stress does indeed condition differences in VT aperture, but that the 

Figure 9: Results for the FLMM created to compare vocal tract aperture (y-axis) throughout the 
vocal tract (x-axis) between /aː/ (red, solid) and /aɪ/ (purple, dash-dot) at 20% of the vowel 
interval, with 95% confidence interval bands shown for both groups.
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size of the effect is much smaller compared to the previous two cases. At the vowel 
onset, accentuated /aː/ is produced with greater constriction in the lower pharynx (as 
indicated by the light yellow shade with negative values which denote a lesser aperture 
and hence greater constriction), but greater expansion throughout the rest of the vocal 
tract, including the hyper-pharynx (as indicated by the light blue regions with positive 
values). This suggests that stressed /aː/ is produced with a lower and more fronted 
tongue body position, but with a constriction in the hypo-pharynx, in comparison to 
neutrally-stressed /aː/.10 As the time course of the vowel unfolds, these differences 
increase: The spatial extent of the pharyngeal constriction broadens into the hyper-
pharynx, and the magnitude of palatal expansion is enhanced. However, even at the 
point when these articulatory distinctions are most pronounced—occurring at ≈65% 
of the vowel interval—the GAMM results suggest that the effect of accentuation on the 
articulation of /aː/ is substantially smaller than previously observed for /aː/ versus /iː/ 
(Section 3.1) or for /aː/ versus /aɪ/ (Section 3.2).

The GAMM summary is provided in Table 3. 76.8% of the total variance is explained 
by the model. With regard to the parametric coefficients, the results reveal that neutrally 
stressed /aː/ is produced with smaller overall vocal tract aperture (μ ≈ 5.31 mm) compared 
to accentuated /aː/ (μ ≈ 5.88 mm). In other words, accentuated /aː/ is produced with 
a more open vocal tract, which is also evidenced by the larger area of blue (i.e., positive 
difference: expansion) compared to yellow/red (i.e., negative difference: constriction) 
in Figure 10. This difference is likely due to a more open jaw/tongue configuration 
associated with the accentuation of the (low) vowel /aː/. With regard to the smooth 

 10 It is possible that the constriction in the lower pharynx serves the role of enhancing the F1-raising effect 
of tongue lowering, as has been argued to occur in the production of French nasal vowels (Carignan et al., 
2015).

Figure 10: GAMM heatmap of vocal tract aperture (z-axis) over time (x-axis) throughout the vocal 
tract (y-axis), for the difference between accentuated and neutrally stressed /aː/. Aperture 
difference (mm) is denoted by color grade, regions of equidistant change (here, Δ0.5 mm) 
are denoted by black solid lines, and 95% confidence interval bands are denoted by red and 
green dotted lines. Significant differences (α = 0.05) are denoted by colored areas (significant) 
versus opaque areas (non-significant). Vertical dashed lines denote 20% and 80% of the vowel 
interval, for comparison with FLMMs at the same time points (Figure 12).



Carignan et al: Analyzing speech in both time and space Art. 2, page 19 of 26

terms, each of the terms is once again significant in contributing to the overall model 
fit. The by-speaker random smooths are of particular interest here, as they have an even 
greater contribution compared to the previous two models. This is clearly seen by the 
differences in curve shapes for the two smooth terms (Figure 11); however, the lack of 
any distinctive patterning in curve variation suggests a relatively large amount of inter-
speaker variation both over time (left plot in Figure 11) and in overall articulation (right 
plot in Figure 11).

The results for the FLMMs created to test for differences between accentuated and neutral 
/aː/ at 20% and 80% of the vowel interval are shown in Figure 12. The VT aperture 
profiles suggest that, in comparison with neutral /aː/, accentuated /aː/ is produced with 
slightly greater constriction at the glottis and slightly greater expansion from the hypo-
pharynx up to the alveolar ridge, where the confidence interval bands meet. Apart from 
the alveolar ridge, the area of the smallest difference is around the velum. These results 
are largely in agreement with the GAMM results for the same time point. Although the VT 
aperture differences at 20% of the vowel interval are rather small, they are nonetheless 
revealed as significant in both the GAMM and FLMM models. However, whereas the 
GAMM suggests significantly greater expansion up to 1.5 mm for accentuated versus 
neutral /aː/ in the anterior portion of the vocal tract, the differences revealed by the 
FLMM are smaller in magnitude (≤0.5 mm), suggesting that the FLMM method is perhaps 
slightly more conservative at this particular region.

Table 3: Summary of the GAMM created to compare accentuated and neutral /aː/.

A. parametric coefficients Estimate SE t-value p-value

(Intercept) 5.8819 0.4309 13.6488 <0.0001

stress-N –0.5704 0.0341 –16.7362 <0.0001

B. smooth terms edf Ref.df F-value p-value

te(time.norm,gridline.norm) 122.9860 145.5727 163.0388 <0.0001

te(time.norm,gridline.norm):stress-N 78.0490 96.0413 24.6578 <0.0001

s(time.norm,speaker) 74.4270 143.0000 1.6923 <0.0001

s(gridline.norm,speaker) 121.7445 143.0000 77.9771 <0.0001

s(word) 3.9844 4.0000 264.0933 <0.0001

Figure 11: Visualization of by-speaker factor smooths over time (left plot) and space (right plot) 
in the GAMM created to compare accentuated and neutral /aː/.
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At 80% of the vowel interval, the VT aperture profiles suggest areas of non-significant 
difference at the glottis and from the hyper-pharynx to the velum, but greater constriction 
for accentuated versus neutral /aː/ throughout the lower pharynx (≤1 mm), and greater 
expansion for accentuated versus neutral /aː/ beginning at the velum and reaching the 
greatest differences at the palate (≈2 mm) and the alveolar ridge (≈3 mm), estimates 
that mirror the GAMM results at these respective locations in each case. Thus, the FLMM 
results are in agreement with the GAMM results at 80% of the vowel interval, both with 
regard to areas of significant differences in the vocal tract and with regard to areas of 
similarity.

4. Conclusion
In each of the three test cases observed in this study, the context of interest was found to 
condition changes in rt-MRI vocal tract aperture functions associated with German vowel 
productions. These changes were observed in the generalized additive mixed models and 
cross-verified at both the beginning of the vowel (20% of the vowel interval) and the end 
of the vowel (80% of the vowel interval), using independently constructed functional 
linear mixed models created with data from these time points. In each of the test cases, 
the FLMM results were in agreement with the GAMM results, even at different levels of 
effect size: large differences in VT aperture, minor (but significant) differences in VT 
aperture, and non-significant differences (i.e., similarities in VT aperture). We conclude 
that these converging results support the use of both GAMMs and FLMMs in the analysis 
of real-time MRI video of speech.

Although in some cases the results suggested that the FLMM method is slightly more 
conservative than the GAMM method, and in other cases the GAMM method more 
conservative than the FLMM method, any differences between the model estimates 
were ≤1 mm (i.e., smaller than the in-plane resolution of the MR images). Given the 
similar results achieved by the two methods, we contend that GAMMs are reliable and, in 
comparison to FLMMs, generally more flexible and more useful for rt-MRI research of this 
type, which involves not only changes in space (throughout the vocal tract) but also in 
time (as speech unfolds temporally). A notable disadvantage of using FLMMs with rt-MRI 
data is that the researcher must prioritize one of these two dimensions at the expense 
of the other: She must choose either to investigate changing aperture over time at a 
single point in the vocal tract, or to investigate different degrees of aperture throughout 
the vocal tract at a single point in time. However, GAMMs allow for observation of 
aperture throughout the vocal tract as it changes over time, without needing to sacrifice 
one dimension for the other. In this way, applying GAMMs to rt-MRI videos of speech 

Figure 12: Results for the FLMM created to compare vocal tract aperture (y-axis) throughout 
the vocal tract (x-axis) between accentuated /aː/ (red, solid) and neutrally stressed /aː/ 
(purple, dash-dot) at 20% of the vowel interval, with 95% confidence interval bands shown for 
both groups.
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provides a method to automatically identify regions of vocal tract variation in a way that 
retains both spatial information about the vocal tract and temporal information about 
speech dynamics.

Although the results observed here are admittedly unremarkable in their informative 
substance—it is not exactly a ground-breaking revelation to show, for example, that /aː/ 
and /iː/ differ in articulation—the three test cases examined in this study demonstrate the 
viability and potential of using GAMMs to investigate dynamic vocal tract characteristics 
in rt-MRI video. With recent and continuing advances in rt-MRI hardware, scanning 
techniques, and reconstruction techniques, as well as ever-increasing access to rt-MRI 
scanning through interdisciplinary research programs, rt-MRI is quickly becoming an 
attainable and worthwhile method for visualizing speech kinematics. It is our hope that 
the proofs of concept provided by this study may encourage the extension of rt-MRI 
GAMMs to more fundamental questions about the nature of human speech sounds and 
sound systems.

An area of possible future research is to determine whether the method proposed here 
extends its viability to the analysis of MRI video of spontaneous speech. Given the higher 
overall speech rate in spontaneous compared to read speech, it would be of particular 
interest to observe whether the GAMM method can accurately capture differences in: 
(1) more sparsely sampled temporal data that include (2) a greater degree of kinematic 
change between subsequent frames. Real-time MRI acquisition of spontaneous speech with 
high temporal and spatial resolutions is certainly the holy grail for investigating natural 
speech articulation, a goal that does not come without its methodological challenges. We 
anticipate that the rt-MRI GAMM method proposed in this study brings us a step closer to 
meeting those challenges by providing a powerful and interpretable statistical framework 
for rt-MRI analysis.

Finally, we would like to suggest that the method outlined here can be generalized 
to other types of speech production data. Similar spatio-temporal GAMMs could be 
applied to, e.g., ultrasound tongue contours to study changes in tongue shape over 
time, electropalatography data to study changes in the location of linguo-palatal contact 
over time, or electromagnetic articulometry data to study changes in the positions of 
multiple flesh-points over time. The method could even extend to acoustic data, e.g., to 
study changes in spectral energy over time as captured by either mel-frequency cepstral 
coefficients or binned frequency energy. When applied to speech production data in these 
ways, GAMMs offer a flexible, interpretable, and statistically robust method to investigate 
the organization and structure of speech in both time and space from a laboratory 
phonology perspective.
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