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Because the lips are external organs, they can be easily observed by means that are non-invasive, 
including simple video recording. The current paper introduces a free-of-charge, highly portable, 
automatic solution for extracting oral posture from digital video, based on an existing face-
tracking utility. We describe how this solution might benefit various lines of laboratory phonology 
research, including analysis of articulatory coordination and audiovisual speech, as well as 
phonetic fieldwork. We then provide a tutorial, framed as a simple experiment in metronomic 
speech. The tutorial describes how to configure the software to work with one’s digital camera 
of choice, how to extract relevant articulatory parameters from the face tracker, and how to 
approach statistical analysis. We have supplied pre-written Python scripts to aid the reader in 
following along with the experiment. The portability, ease, and affordability of the described 
solution have important implications for the accessibility of articulatory measurement, both in 
the lab and out in the field.
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1. Introduction
Articulatory tracking methods offer clear value to researchers in various branches of 
laboratory phonology. The benefits offered to phoneticians are obvious and well-established: 
Kinematics afford a detailed characterization of the motoric mechanisms of speech. 
However, as we have argued elsewhere (e.g., Kawamoto, Liu, Lee, & Grebe, 2014; Krause 
& Kawamoto, 2019) psycholinguists examining verbal reaction times also have much to 
gain from employing articulatory methods. For one thing, articulatory operationalizations 
of verbal reaction time often tell a very different story than do acoustic ones, in part 
because different speech-related movements are not obligatorily phase-locked (Kawamoto 
et al., 2014; Holbrook, Kawamoto, & Liu, 2019). Continuous articulatory trajectories can 
also be used to examine phonological expectations preceding an overt response (Krause & 
Kawamoto, 2019, 2020), similarly to how mouse-tracking provides insight into continuous 
decision mechanisms in manual reaching tasks (e.g., Spivey, Grosjean, & Knoblich, 2005).

The present paper describes a method for extracting articulatory variables such as 
vertical and horizontal lip apertures from digital video of participant speech, using a 
freely available face-tracking utility (OpenFace 2.0, Baltrušaitis, Zadeh, Lim, & Morency, 
2018). In the example we will present, video data were collected using an affordable and 
widely available webcam, although no particular model is required. Our method does 
not require applying explicit reference markers to the face, nor does it require anchoring 
the camera relative to the face. As a result, participant preparation time is negligible. In 
addition, because any digital video camera can serve as the primary sensor, including those 
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integrated into laptop computers or cellular phones, our method could be taken outside 
the laboratory and into the field. In other words, this method presents a particularly 
low barrier to entry, and should be readily adoptable by researchers who have not yet 
incorporated articulatory methods into their work. In addition, it can easily complement 
those existing articulatory methods that permit video recording of the face.

1.1. Linguistic information accessible via lip tracking
Vertical lip aperture affords rich information. For example, while phonetic research 
typically associates changes in vertical lip aperture with labial consonants, non-labial 
consonants (and vowels) will necessarily involve target configurations in which the lips 
are open; the very fact of this contrast can be exploited by appropriately considered 
designs. We ourselves have done so when analyzing articulatory reaction times of bilabial- 
or alveolar-initial utterances following open- or closed-mouth initial oral configurations 
(Holbrook et al., 2019) and anticipatory oral postures produced when participants expect 
upcoming utterances to have either bilabial or nonbilabial initial consonants (Krause & 
Kawamoto, 2019). In some circumstances, vertical lip aperture may contrast even between 
non-labial consonants (such as between velars and coronals, which, given the different 
requirements they place on contact between tongue and palate, and the varying degree to 
which they receive functional contributions from the lower incisors, differently constrain 
jaw height, e.g., Lee, Beckman, & Jackson, 1994).

Other features of oral configuration are also informative. In similar phonetic contexts, 
horizontal lip aperture can be used to distinguish between rounded and unrounded 
vowels (due to the narrowing of the horizontal lip aperture associated with increased 
lip protrusion, Fromkin, 1964). Lip area has shown close correspondence to the acoustic 
envelope and to vocal tract resonances (Chandrasekan, Trubanova, Stillitano, Caplier, & 
Ghanzafar, 2009).

Furthermore, there is a long line of evidence that complex interdependencies may arise 
between articulatory variables that are externally visible, and ones hidden inside the 
vocal tract. In an early study comparing EMA to optical lip tracking, Yehia, Rubin, and 
Vatikiotis-Bateson (1998) found that most of the variability in vocal tract motion (~80%) 
was recoverable from orofacial movement alone. Similarly, we have reported preliminary 
evidence that the onset of labial movement reliably differs between voiced and voiceless 
initial consonants, suggesting possible reciprocal coordination between lips and glottis 
(Liu, Holbrook, Kawamoto, & Krause, under review). Other recent work has explored the 
implications for modern computer vision. For example, a recent computer vision study 
found that tongue movements could be partly predicted from dynamic observation of the 
external face (Kroos, Bungaard-Nielsen, Best, & Plumbley, 2017).

Additionally, visible articulatory movements contribute to face-to-face speech, in a 
manner that varies across contexts and populations. For example, listeners attend more 
closely to oral movements when there is background noise (Vatikiotis-Bateson, Eigsti, 
Yano, & Munhall, 1998). Speakers appear to leverage this fact, making larger articulatory 
motions in noisy, compared to quiet, environments (e.g., Hazan & Kim, 2013), even when 
silently ‘mouthing’ speech (Herff, Janke, Wand, & Schultz, 2011). Additionally, while 
mouthed speech leads to a reduction in tongue articulation, lip articulation remains 
distinct, presumably because of its visual salience (Bicevskis et al., 2016). Speakers striving 
for clear speech exaggerate their lip movements when the listener is sighted, but not when 
the listener is visually impaired (Ménard, Trudeau-Fisette, Côté, & Turgeon, 2016).

It is clear that measurements obtained from orofacial movement alone can be used to 
answer a number of relevant questions in the present literature, even without obtaining 
direct information from the inner vocal tract. As such, for many lines of research it is 
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advantageous to forgo measurements from the inner vocal tract to allow participants to 
speak in a more naturalistic environment. The method we propose further extends this 
logic, allowing participants to speak more naturally without the use of facial markers, and 
instead drawing measurements from digital video of ordinary speech.

It is worth noting that because this method draws from the visual information provided 
by the video, the participant must remain facing the camera for maximally effective 
measurement. Therefore, this method works best with study designs that force participants 
to reference an external speech cue during measurement (e.g., word or picture naming 
studies, in which the camera could be mounted on the computer screen used to display 
the words to be named). However, some leeway exists, and later portions of this paper 
discuss the method’s robustness to the participant’s distance from the camera.

1.2. Comparison with other approaches
Other techniques have previously been applied to measure speech articulation, most 
notably EMA and optical motion tracking with markers. Perhaps the most well-known 
example of the latter is the Optotrak family of systems (NDI, Waterloo, Ontario), the 
newest of which claim accuracy down to 0.1 mm and temporal resolutions of 4,600 Hz. 
Independent empirical testing of the Optotrak 3020, when calibrated to an operating 
range of 2–4 meters, found that in-plane motion was accurate to within .01 mm, and out-
of-plane motion to within .05 mm (Schmidt, Berg, Ploeg, & Ploeg, 2009). Work concerning 
the accuracy of EMA found the AG-500 EMA tracking system to have a median error of 
0.5 mm, and a maximum of 2 mm with a temporal resolution of 200 Hz (Yunusova, 
Green, & Mefferd, 2009). We provide these specifications for the sake of comparison with 
our present method.

Mik et al. (2018) recently explored the benefits of using conventional EMA analysis 
alongside a series of three high-speed optical cameras registering the movements of 
reflective markers at 200 fps. Their approach affords an extremely nuanced characterization 
of the data and allows researchers to cross-validate oral configuration estimates provided 
by both components of the system. While our proposed method is in some ways similar 
to the high-speed optical portion of the system they describe, it seeks to serve a different 
purpose, trading spatial and temporal resolution for affordability, portability, and the 
absence of facial markers.

We ourselves have elsewhere described a different video-based tracking system than 
the one in this paper (e.g., Holbrook et al., 2019; Kawamoto et al., 2014). That system 
differed in two primary respects. Firstly, explicit reference marks were applied at four 
key positions around participants’ lips using nontoxic face paint; these paint marks were 
motion-tracked using a commercial video-editing product (Adobe AfterEffects CS4). 
Secondly, a lipstick camera was anchored to a fixed position, relative to the face, by 
mounting it on a steel arm attached to a batting helmet. (Because AfterEffects expresses 
motion-tracked positions in raw video pixels, this anchoring was used to ensure that a 
given distance in pixels retained the same meaning over the course of an experimental 
session.) The present system eliminates the need to apply explicit tracking references, by 
replacing Adobe AfterEffects with OpenFace (more details below). This also results in 
financial savings, in that OpenFace is free to academic researchers. However, by using 
a head-mounted camera, our previous system offers one advantage the present method 
cannot: the ability to track participants’ lips while using tasks that do not limit their head 
movement. We see no reason that the head-mounted approach could not be combined 
with the use of OpenFace for tasks in which speech is not elicited by external stimulus 
cues, or in paradigms which otherwise require participants to look freely around their 
environment. However, when task demands can be used to orient participants’ faces in 
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the preferred direction, the current approach offers clear benefits to participants’ comfort, 
as well as the flexibility to take the system ‘into the wild.’

1.3. OpenFace 2.0
The method here described is made possible by using the OpenFace face-tracking utility 
(Baltrušaitis et al., 2018). The essential operational details of that system are well-
described by its authors; however, it is worth highlighting a few key points.

OpenFace is a deep-learning-based system built on top of the OpenCV computer vision 
framework. It estimates several values pertinent to facial behavior; the ones most relevant 
to our present purpose are facial landmark location and head pose. Its approach to detecting 
facial landmarks extends the technique of using constrained local models (CLMs) by adding 
a set of ‘patch experts,’ resulting in an approach the authors call a convolutional experts 
constrained local model (CE-CLM, Zadeh, Baltrušaitis, & Morency, 2017). These patch 
experts specialize in detecting features in a completely local fashion, irrespective of the 
estimated locations of other features, and in a manner robust to variability in landmark 
appearance. The global configuration of landmarks is then updated according to a three-
dimensional point distribution model (PDM), which both controls landmark positions and 
penalizes misalignments. The PDM is computed using the mean values of each landmark 
in all three spatial dimensions, as well as rotation and translation matrices and a vector 
of non-rigid shape parameters (for full details, see Equation 3 in Zadeh, Baltrušaitis, & 
Morency, 2017).

If OpenFace is facilitated with accurate values for the intrinsic camera parameters, it 
can express the positions of facial landmarks in three-dimensional space (with respect to 
the camera origin). This is possible because OpenFace uses orthographic projection to 
establish correspondences between the CE-CLM’s three-dimensional PDM and the two-
dimensional points on the camera image. OpenFace then uses these correspondences, 
as well as the intrinsic camera parameters, as inputs to a direct least-squares solution to 
the perspective-n-point (PnP) problem (Hesch & Roumeliotis, 2011). This PnP solution 
determines the camera pose with respect to the facial landmarks. The camera pose not 
only permits real-world positional estimates of individual facial landmarks, but also allows 
the system to estimate head pose in six degrees of freedom.

1.4. Goals of the current paper
The current paper will introduce the reader to our method by applying it to a familiar 
paradigm in laboratory phonology: metronomic speech with alternating syllables.

We have three goals for this paper, which we will elaborate after introducing them:

1.  Present a tutorial for using OpenFace effectively in laboratory phonology research.
2.  Demonstrate this method’s ability to detect linguistically meaningful contrasts in 

oral configurations produced during speech.
3.  Demonstrate the robustness of lip aperture estimates obtained from OpenFace 

across different distances of the face from the camera.

1.4.1. Presenting a tutorial
Our description of the steps taken during our metronomic speech task will be more 
than usually detailed. Our description of the method in fact begins before articulatory 
measurement, with an explanation of the procedure for empirically determining the focal 
lengths and optical centers (along both the x and y axes) of the camera to be used. This 
step is necessary to maximize the accuracy of OpenFace’s positional estimates. Several 
procedures we will describe, including camera calibration, segmentation of video into 
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trials, video analysis using OpenFace, extracting lip aperture trajectories from OpenFace’s 
raw output, and trimming trials with extreme head orientation will be facilitated by custom 
scripts written in Python 3. Where possible, we have provided commented versions of 
these scripts as supplemental materials to appear with this article. (In one case, we have 
instead referred the reader to code appearing in an existing online tutorial, which served 
as the basis for our own script.)

1.4.2. Demonstrate the detection of linguistic contrasts
We will visualize and statistically analyze the data obtained from the metronomic speech 
task. The reader will see our method’s ability to statistically distinguish the lip aperture 
trajectories produced for each of the four syllables in our inventory.

1.4.3. Demonstrate the robustness of positional estimates
The way OpenFace solves the PnP problem (see above) allows it to determine its positional 
estimates for facial landmarks on a world coordinate system, given with respect to the 
camera origin. We will demonstrate that, when defined in these coordinates, lip apertures 
of the same magnitude are assigned comparable estimates even when measured at different 
distances from the camera. Consequently, so long as participants remain generally facing 
the camera during a speech elicitation task, the camera need not be anchored in a fixed 
position relative to the head.

We have achieved this demonstration by using two identical webcams, sitting side-
by-side, at the same height, and at a fixed distance of 12 inches from each other in the 
depth dimension. Participants were simultaneously recorded by both cameras, allowing 
us to directly compare measurements of the exact same utterances, measured from two 
different distances.

2. Method
2.1. Calibration
To make accurate estimations of the camera’s position in space, OpenFace should be 
given parameters obtained through a camera calibration, specifically the focal length (fx 
and fy) and optical center (cx and cy) of the camera that was used for recording. These 
parameters are constant across recordings, and thus only need to be taken once unless the 
focus of the camera is changed. As such, any autofocus function must be turned off before 
calibration, and remain off as participants are run.

To obtain the parameters used for camera calibration, we employed a Python 3 script 
using the OpenCV computer vision library to perform a chessboard calibration. We have 
not included this script as a supplement to the current article, because the script we 
used was copied almost in its entirety from the tutorial freely available here: https://
opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_calibration/
py_calibration.html. We refer the reader to that tutorial for appropriate Python 3 code 
that can be copied, with minimal changes, into their editor of choice.

In the chessboard calibration method, camera parameters are calculated from a series of 
still images featuring an asymmetrical black-and-white chessboard with vertices of known 
dimensions, photographed at a variety of distances, angles, and locations in the camera 
frame. We found such an image online (specifically of a 9 × 6 chessboard), printed it onto 
standard printer paper, and attached it to a binder to ensure it stayed flat while being 
photographed from multiple angles. Then 25–28 pictures were taken using each camera and 
put through the Python script to obtain the camera parameters for use during data coding. 
Although there is no strict requirement for the number of pictures required to produce 
accurate parameters, the documentation for the OpenCV library recommends at least 10.

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_calibration/py_calibration.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_calibration/py_calibration.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_calibration/py_calibration.html
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2.2. Participants
Six speakers from the University of California Santa Cruz participated in this study. The 
study was approved by the University of California Santa Cruz’s Institutional Review 
Board, and participants gave informed consent before participating.

2.3. Design
The present design was chosen to show that this method can detect linguistically 
meaningful contrasts between phonemes using OpenFace’s estimated mm as a dependent 
variable in a within-participants experimental design. These estimated mm should 
not necessarily be assumed to map directly to real-world mm. A great deal of work in 
the field of computer vision seeks to maximize the accuracy of computer estimates of 
distance despite the inherent difficulty of estimating three-dimensional distances using 
two-dimensional images. This challenge is known as the PnP problem (see Introduction). 
However, for our present purposes, it is extremely difficult to verify that OpenFace’s 
estimated mm are accurate to the level required to replace more traditional physical 
measurements like calipers for a variety of reasons, including a) inability to match 
OpenFace’s estimated digital landmarks with physical landmarks at mm-level precision, 
b) the number of participants required to prove that OpenFace’s estimation works to the 
same level of precision across an extremely large number of potential skin tones, face 
shapes, and lighting conditions, and c) the fact that both measurements cannot be taken 
simultaneously, as using a tool like calipers would obstruct the face in video data, leading 
to a drop in accuracy. Therefore, we leave such validations to those doing empirical 
work in the area of the PnP problem, and restrict our own claims to the ability to detect 
statistically reliable distinctions between phonemes in within-participant designs, and 
that OpenFace’s measure of estimated mm is internally consistent regardless of the 
distance of the speaker from the camera.

We used a 2 × 2 design of syllable x camera distance. Participants produced four syllables, 
/nu/, /mu/, /ni/, and /mi/, chosen to contrast in vertical lip separation during both 
consonant production (alveolar /n/ being expected to have greater vertical lip separation 
than bilabial /m/) and vowel production (unrounded /i/ being expected to have greater 
horizontal lip separation than rounded /u/). These productions were simultaneously 
recorded by two cameras at distances of 18 inches from participant (hereafter ‘close 
camera’) and 30 inches from participant (hereafter ‘far camera’). Two dependent variables 
were drawn from the resulting camera footage, vertical lip separation in pixels, and 
vertical lip separation in OpenFace’s estimated mm.

2.4. Apparatus
Speakers were recorded using two Razer Kiyo webcams shooting at 60 fps and 1280 × 720 
resolution, each connected to a separate computer running OBS Studio 21.0. The particular 
model of webcam possesses an adjustable soft white light to better illuminate faces, and 
informal testing proved the dimmest setting to be the best compromise between improved 
lighting conditions and participant comfort.

The close camera was placed atop a computer monitor, and the far camera was placed 
atop an identical computer monitor twelve inches behind it. Due to the fact that the close 
camera would obstruct the view of the far camera if placed directly behind it, the cameras 
were placed six inches apart horizontally, the minimum required for the close camera to 
no longer obstruct the far camera.

In order to make the comparison across cameras as fair as possible, both were set to use 
the same focal length; the specific length was selected so that participants’ faces would 
be in proper focus in the close camera. Recall that OpenFace’s positional estimates rely 
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on the calibrated camera parameters, which themselves are partly a function of the focal 
length. The goal was to simulate how OpenFace would compensate for postural changes 
in front of a single camera. Therefore, using a common focal length was essential. This 
necessarily meant that video taken by the far camera was suboptimally focused. While 
this may appear to present an undesirable tradeoff, Baltrušaitis et al. (2018) have shown 
that OpenFace’s tracking is reliable under a range of subobptimal conditions.

2.5. Procedure
Participants were seated approximately 18 inches from the closer camera, and thus 
approximately 30 inches from the far camera, given the 12-inch distance between the 
cameras. If their height made it necessary, participants were provided with an additional 
pillow for the chair to ensure that they were high enough to be in frame for both cameras. 
They were then given the instructions to produce the syllables /nu/, /mu/, /ni/, and 
/mi/ in time with the beat of an electronic metronome (set to 124 beats per minute) with 
one syllable being produced per beat. Participants were told to keep their heads still, 
although they were permitted to keep the beat with fingers or toes if so desired. They 
were permitted to practice producing syllables in time with the metronome until they 
were sure they understood the task and felt comfortable performing it. Participants were 
instructed to remain oriented toward the computer monitor during all productions.

Once participants had finished the practice, they produced ten sprints of the syllables. 
During each sprint, participants were instructed to remain silent for at least four beats, 
then begin speaking on the first beat of any subsequent measure. They then produced the 
sequence /nu/, /mu/, /ni/, /mi/ five times in a continuous cycle, such that each syllable 
was produced a total of five times. Following this, they were given a brief rest, then told 
to begin the next sprint of five cycles through the syllables.

2.6. Data preparation
A trained research assistant and one of the authors used HandBrake open source video 
transcoder and the Adobe Premiere Creative Cloud video editing software to prepare 
video segments of each of the participant’s sprints. First, all raw video recordings were 
converted from variable frame rate to constant frame rate in order to correct for transient 
fluctuations in frame rate that would have made the videos difficult to align in the editing 
software. (This process was not automated via script due to the fact that HandBrake already 
has a batch processing feature.) Then, for each participant, the two video recordings (one 
from each camera) were imported into Adobe Premiere and brought into synchronous 
alignment using the ‘synchronize by audio’ feature. A small amount of post-hoc color 
correction was then applied to maximize the similarity of the recordings. Finally, the two 
videos were cut at the same ten time points, found by referencing key metronome beeps 
and then searching for visual evidence of the lingual closure for the first /n/, and separate 
videos were saved out for each of the participant’s 10 sprints. Because fatigue and verbal 
stumbling were common, we retained each participant’s best five sprints for analysis.

We used a custom Python script (Appendix A [Python Script 1, hereafter PS1]) to chop 
each sprint recording into separate segments for each constituent syllable. PS1 started 
at the beginning of each sprint-sized video and made a cut every 483 ms (i.e., 60s/124, 
given our 124 BPM metronome rate). PS1 then generated and executed a Unix bash file to 
pass each of these smaller video segments through OpenFace for processing (a Windows 
version that instead uses a batch file is included in the additional files). PS1 configured 
OpenFace with the camera lens parameters obtained earlier (see Method), in order to 
maximize the accuracy of positional estimates. OpenFace permits a variable level of detail 
in its outputs. In this case, PS1 generated a csv file containing estimates of head pose at 
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each frame (in the three translational and three rotational degrees of freedom), as well as 
facial landmark location estimates in two different coordinate systems: raw video pixels, 
and estimated mm. OpenFace2.0 gives pitch, yaw, and roll of the head in radians, and x-, 
y-, and z-translation of the head in estimated mm with respect to the camera origin. In 
one of the facial landmark location coordinate systems, facial landmarks are located with 
respect to the two-dimensional grid of video pixels. In the other, facial landmarks are in 
x-, y-, and z-translation coordinates given in estimated mm with respect to the camera 
origin.

A second custom Python script (Appendix B [Python Script 2, hereafter PS2]) iterated 
over all the OpenFace output files for a participant and constructed a new csv file 
summarizing the trial-by-trial data for that participant. For each trial (at each camera 
distance), PS2 extracted three head-pose parameters for every frame: pitch, yaw, and 
z-translation. Pitch and yaw were converted to absolute values. PS2 then computed the 
maximum absolute pitch, maximum absolute yaw, and mean z-translation produced over 
the trial, and wrote those values to the appropriate row of the summary data file. These 
values were used as criteria for retaining or excluding trials from statistical analysis (see 
below). PS2 also extracted OpenFace’s tracking confidence estimates at each frame and 
wrote the minimum obtained value for the trial to the summary data file. This minimum 
value was also used as a retention/exclusion criterion.

Finally, PS2 extracted two facial landmark positions from each frame (each was extracted 
once from the pixel coordinates and once from the estimated mm coordinates). The 
OpenFace documentation gives a diagram of how each landmark is labelled, and where 
each appears on a parametric face: https://github.com/TadasBaltrusaitis/OpenFace/
wiki/Output-Format. Because our analyses in this demonstration will consider vertical 
lip aperture, we extracted positions of the outer lips just above and below the midline; 
that is, landmarks 51 and 57. (If one wished to analyze horizontal lip aperture, one could 
extract the locations of landmarks 48 and 54, as was done by Krause & Kawamoto, 2020). 
For each coordinate system, PS2 computed Euclidean distance between landmarks 51 and 
57 in the (x, y) plane, for each video frame. PS2 then smoothed the resulting vertical lip 
aperture trajectories by submitting them to a Savitzky-Golay filter, parameterized with 
a window size of seven samples and a third-degree polynomial. PS2 wrote the resulting 
smoothed trajectory values to the summary data file. Figure 1 depicts OpenFace’s facial 
landmarks imposed on a photograph of a face. Landmarks 48, 51, 54, and 57 have been 
labelled for reference.

2.7. Data trimming
As already mentioned, by using a task that oriented the face toward an external stimulus 
in the direction of the cameras, we helped to eliminate distortions that might arise due 
to suboptimal head orientation. Such distortions can be further minimized by trimming 
trials with extreme head orientations, as well as trials on which OpenFace’s confidence 
in its own tracking is poor. In all the cases described below, the elimination of any trial 
entailed deleting both the close camera distance data and the far camera distance data. 
Although when originally preparing these results, we dropped trials by hand, we have 
since developed a Python script (Appendix C) that automates this process.

First, we dropped trials for which tracking confidence fell below 85%, for either camera 
distance. Second, we used the close camera data as the basis for determining trials with 
extreme head orientations, and dropped those. The general approach was to identify trials 
in which the face was angled very far off center (i.e., extreme absolute pitch and/or yaw) 
and trials in which the participant leaned very far back or forward, with respect to their 
normal range over the session (i.e., extreme z-translation). Specifically, we eliminated 

https://github.com/TadasBaltrusaitis/OpenFace/wiki/Output-Format
https://github.com/TadasBaltrusaitis/OpenFace/wiki/Output-Format
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trials in which absolute pitch and/or yaw fell more than 2.5 standard deviations above 
the omnibus mean. We also eliminated trials in which mean z-translation for the trial 
fell more than 2.5 standard deviations above or below the overall mean z-translation for 
that participant. Taken together, these criteria led to the exclusion of 12 trials (2% of 
original data).

2.8. Statistical analysis
The goal of our statistical analyses was to illustrate two important points about this 
procedure: that it facilitates detection of linguistically-meaningful contrasts in lip aperture, 
and that its estimates in real-world coordinates are robust to changing distances of the face 
from the camera, eliminating the need for an apparatus that fixes this distance. To that 
end, our analyses will consider the contributions of camera distance and initial consonant 
to measurements of minimum vertical lip aperture, which should differ between bilabial 
and nonbilabial initial consonants.

In keeping with current best practices in phonetics and psycholinguistics, we analyzed 
data using linear mixed-effects (LME) models with random intercepts for participants and 
items (i.e., syllables), and random slopes (where possible) for fixed factors. There remains 
some debate about how best to specify the random effects structures of these models: 
While Barr, Levy, Scheepers, and Tily (2013) advocate the use of maximal models, there 
are reasons to believe that maximal models are at an increased risk of convergence failure 

Figure 1: A depiction of OpenFace2.0’s facial landmarks, as arrayed on a photograph of a real 
face. Landmarks critical to the determination of vertical and horizontal lip aperture have been 
labelled.
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and overparameterization (Bates, Kliegl, Vasishth, & Baayen, 2018). We have therefore 
applied Bates et al.’s (2018) recommended simplification procedure, which begins with 
the maximal model and uses a combination of principal components analyses and model 
comparison to find a ‘parsimonious’ model justified by the underlying structure of the 
data. Experts also disagree on how to use LME models in hypothesis testing; however, 
Luke’s (2017) recent simulations suggest that hypothesis testing using Satterthwaite- or 
Kenward-Roger-estimated degrees of freedom leads to lower Type I error rates than the 
‘t-as-Z’ approach or model comparison via likelihood ratio testing. We therefore performed 
t- and F-testing of fixed effects using Satterthwaite-estimated degrees of freedom.

3. Results
3.1. Visualization of vertical lip aperture trajectories
Two of the four syllables began with /m/ (a bilabial consonant, requiring closed lips to 
execute) and two with /n/ (an alveolar consonant, requiring open lips to execute). We 
therefore should expect minimum vertical lip apertures to be smaller for /m/- than for 
/n/-initial words. Our analysis will consider minimum vertical lip apertures as defined in 
two coordinate systems: raw camera pixels, and OpenFace’s estimated mm, as computed 
after correcting for the z-translation component of the head pose. While we should expect 
camera distance to have a large impact on vertical lip aperture as expressed in raw pixels, 
the effect should be reduced or eliminated when expressed in estimated mm.

Figures 2 and 3 generally bear out these expectations. Both plots directly compare 
mean vertical lip aperture trajectories measured from the two camera distances. The 
graphs are paneled such that columns distinguish initial consonants and rows distinguish 
vowels. Figure 2 depicts trajectories in raw video pixels, and Figure 3 in estimated mm. 
The scaling of both graphs is comparable, in that the y-axes of each graph run from 90% 
of the minimum mean value depicted to 110% of the maximum mean value depicted.

Figure 2: Mean vertical lip aperture trajectories, as measured at both distances from camera and 
given in raw video pixels. Each video frame spans ~16.67 ms. Error bars: ± 1 SEM.
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Note that, even during bilabial closures, distances in both sets of coordinates are well 
above 0. This is a consequence of using outer (rather than inner) points on the lips as 
the basis for vertical lip aperture. Previous experience with OpenFace has led us to the 
conclusion that outer points are tracked more smoothly and consistently. Should a researcher 
wish to center complete closures of the lips on 0, they could do so by determining the 
mean minimum distance measured for a participant during bilabial-initial syllables, and 
subtracting that value from all the participant’s data. However, further inner-lip tracking 
may be needed if the researcher wishes to estimate lip compression (which can serve as 
a basis for discriminating different types of closures, and possibly for detecting subglottal 
pressure), which may be an important consideration to weigh when deciding whether and 
how to apply this method.

In our case, we forewent re-centering based on bilabial-initial syllables, because either 
we would have had to perform the subtraction based on the data from one camera, which 
would have resulted in data from the other camera looking notably strange, or we would 
have had to re-center data from each camera separately, which would have distorted the 
cross-camera comparisons we were pursuing.

3.2. Tests of minimum vertical lip aperture
We constructed two LME models of the minimum vertical lip aperture produced during 
the trial: one with distances expressed in estimated mm and the other with distances 
expressed in video pixels. Both models included fixed factors for camera distance, initial 
consonant, and the two-way interaction. Maximal random effects structures for these 
models would include random intercepts for participants and items, participant-level 
random slopes for camera distance, initial consonant, and the two-way interaction, an 
item-level random slope for camera distance, and random-effect correlation terms within 
participants and items. Table 1 shows the parsimonious random effects structures for 
each model, determined using Bates et al.’s (2018) procedure.

Figure 3: Mean vertical lip aperture trajectories, as measured at both distances from camera and 
given in OpenFace2.0’s estimated mm. Each video frame spans ~16.67 ms. Error bars: ± 1 SEM.
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In the model constructed using estimated mm, neither the main effect of camera distance 
nor the camera distance × initial consonant interaction was statistically reliable, ps > .05. 
However, as expected, there was a reliable main effect of initial consonant, t(6) = 2.89, 
p = .03, 95% CI of the difference [0.25, 3.18].

While the failure to detect a main effect or interaction term involving camera distance is 
consistent with our expectation (and a desirable feature of the method), one might protest 
that such a null effect could be obtained by simply using an underpowered dataset. Our 
testing of the model constructed using raw video pixels helps put this concern to rest.

In the model constructed using pixels a reliable main effect emerged for camera 
distance, t(5) = 13.88, p < .001, 95% CI of the difference: [9.45, 13.62], though 
the effect of initial segment was only marginal, t(6) = 2.40, p = .055, 95% CI of the 
difference: [–0.07, 4.18]. The camera distance × initial consonant interaction was also 
reliable, F(1, 5) = 9.30, p = .03. Unpacking this interaction into its simple main effects 
found that the difference across initial consonants was not reliable at the close camera 
distance, t(5) = 3.23, p = .07, 95% CI of the difference: [–0.31, 5.73], or at the far 
camera distance, t(7) = 1.52, p = .47, 95% CI of the difference: [–1.65, 4.46]. (P-values 
and confidence intervals for the simple main effects were Tukey-adjusted.) Although the 
simple main effect at the close difference was not individually reliable, the general form 
of this interaction is exactly what one should expect given that overall dynamic range, 
in raw video pixels, should be reduced at the further distance. Our detection of positive 
results for both the main effect of camera distance and the camera distance × initial 
consonant interaction demonstrates that the null effects in the estimated mm model do 
not reflect a lack of statistical power.

4. Discussion
This paper has provided readers with a tutorial for using OpenFace, in conjunction with 
readily available digital camera hardware, to collect and analyze articulatory phonetic data. 
The empirical results we presented also provided support for two important claims: that 
the method is sensitive to linguistically meaningful distinctions in articulatory variables, 
and that the method is reasonably insensitive to incidental changes to displacement of the 
face from the camera. We will unpack the support for these claims consecutively.

We found that the places of articulation of the syllables’ initial consonants affected the 
smallest vertical lip apertures produced during a syllable. As expected, vertical lip apertures 
were smallest when participants produced /m/-initial words, requiring a bilabial closure, 
than when they produced /n/-initial words, whose alveolar lingual closure left the lips free 
to separate. These findings suggest that lip aperture estimates derived from OpenFace’s 
facial landmark tracking capture meaningful differences in articulatory constraints.

Our use of vertical lip aperture has been intended as a simple introduction to what is 
possible with this method. However, it should be readily apparent that more sophisticated 
articulatory measures could be easily derived from this approach. For example, by taking 
the first temporal derivative of instantaneous (vertical or horizontal) lip aperture, one 
could obtain a continuous lip aperture velocity curve. By determining a local maximum 
of the velocity curve’s magnitude component, one could determine maximum speed. By 

Table 1: Summaries of random effects structures for LME models of minimum vertical lip aperture.

Random Effects

Units Participants Items

mm Intercept + Camera Dist. + Initial Consonant + Camera Dist. × Initial Consonant Intercept

pixels Intercept + Camera Dist. + Initial Consonant + Camera Dist. × Initial Consonant Intercept



Krause et al: Automatic motion tracking of lips using digital video and OpenFace 2.0 Art. 9, page 13 of 16

finding zero crossings in this velocity curve, one could determine changes in the direction 
of a lip aperture’s motion. If a researcher is interested in questions of reaction time, they 
could use changes in lip aperture to determine an index of articulatory reaction time. 
Multiple solutions to this problem have already been proposed. For example, Holbrook 
et al. (2019) determined the first frame at which movement exceeded a fixed distance 
criterion. Mooshammer et al. (2012) is one of several papers that have used a variable 
criterion that defines articulatory onset as the moment at which movement speed first 
rises above a given percentage of the maximum speed for that trial.

We also compared identical vertical lip apertures recorded at two camera distances. We 
found that, when comparing the measurements of the further camera to the closer one, 
vertical lip apertures spanned a smaller number of video pixels, but not a smaller number 
of OpenFace’s estimated mm.

We believe that adoption of the method outlined here could lead to a much broader 
deployment of articulatory tracking. For laboratory speech scientists who have to date 
relied solely on acoustic recordings, due either to cost or tractability, we hope the relative 
ease and affordability of this method will be all the incentive they need to supplement 
their approach.

There are other intriguing ways in which this method might increase the proliferation of 
articulatory recording. One of the most exciting possibilities is the potential to take it into 
the wild. Acoustic recordings have been de rigueur in phonetic fieldwork for several decades, 
but the use of articulatory recordings in fieldwork is a somewhat newer phenomenon, which 
until now has depended on portable ultrasound technology (Gick, 2002). Given that our 
modest spatial resolution was enough to reveal meaningful articulatory differences, there 
is nothing preventing enterprising phoneticians from taking laptops, cellular phones, and 
so forth outside the laboratory to use as portable recording devices. This approach offers 
potential benefits even to those phoneticians already using ultrasound in the field; while 
the primary benefit of ultrasound is in recording tongue movements, to our knowledge 
articulatory fieldwork has not yet involved lip tracking. We look forward to seeing what 
fieldwork of this kind might reveal about the phonetic richness of the world’s languages.
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