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Given the acoustic consequences of physiological differences between talkers, there is a practical 
need for effective and theoretically motivated procedures of vowel normalization to facilitate 
comparison of speech produced by people who differ by dialect or language. In addition, there is 
a question whether listeners might utilize a normalization procedure during speech perception. 
This paper reports the results of two studies that explore these questions—with particular focus 
on vocal tract length normalization. Drawing on research in speech engineering, where accurate 
estimates of vocal tract length are needed in some approaches to automatic speech recognition 
and speaker verification, a new model of vowel normalization is introduced. The model uses a 
direct measure of average formant spacing (the ∆F) which can be used to measure vocal tract 
length. The acoustic consequences of vocal tract length differences are removed from vowel 
measurements by scaling vowel formant measurements by ∆F. Study 1 found that this method 
is comparable to Nearey’s (1978) uniform normalization method, while providing an explicit 
vocal tract length interpretation, and a rationalized unit of measure. Study 2 found that uniform 
normalization measures (which let each formant serve as a noisy estimator of ∆F) improve vowel 
classification even with only a couple of randomly selected vowel tokens. This suggests that vocal 
tract length normalization could be involved in speech perception.
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1. Introduction
The acoustic properties of speech are shaped in large part by the movements of the upper 
vocal tract and the vibrations and turbulence set up by the flow of air through the larynx 
and vocal tract constrictions. In addition to the controlled movements of the upper vocal 
tract, speech acoustics are determined by the overall size of the vocal tract and larynx.

Vowels differ primarily in the two lowest resonances of the vocal tract—the first and 
second ‘formants’ (F1 and F2). For instance, the vowel [i] has a low F1 and a high F2, while 
[a] has a high F1 and a low F2. The acoustic vowel space that is defined by a talker’s range 
of F1 and F2 values is shifted up or down in average F1 and F2 frequency as a function of 
vocal tract length. Longer vocal tracts have lower average resonant frequencies. This vocal 
tract length effect creates a practical challenge for automatic speech recognition, and for 
the phonetic comparison of speakers, dialects, and languages, as well as a ‘normalization’ 
problem for listeners who must recognize vowels produced by a range of different talkers.

This paper will introduce the ∆F method of vocal tract length normalization. In two 
studies, the paper will evaluate ∆F vowel normalization as a practical technique for 
acoustic analysis of language data, and also gauge the feasibility of vocal tract length 
normalization as a perceptual mechanism.
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1.1. Vocal tract length
According to the acoustic theory of speech production (Fant, 1960) it is theoretically 
possible to remove vocal tract length differences from our descriptions of speech 
acoustics (Nordström & Lindblom, 1975). Once we have measurements of the vocal tract 
resonant frequencies (F1-F4) we can use the talker-specific vowel formant distributions 
to estimate normalization factors. Several normalization methods have been proposed, 
with more or less reference to acoustic theory (Gerstman, 1968; Lobanov, 1971; 
Nordström & Lindblom, 1975; Nearey, 1978; Watt & Fabricius, 2002). The aim of 
acoustic vowel normalization is to make it possible to express the formant frequencies 
using a measurement scale that is independent of talker differences, for use in comparing 
dialects and languages with each other. Vowel normalization may also be a part of the 
cognitive process of speech perception.

Whether listeners make use of vocal tract length in speech perception is an open question 
(Johnson, 1997). It has been argued that perceptual compensation for talker differences 
must be more than simply a vocal tract length normalization, because acoustic differences 
between men and women (who tend to differ in vocal tract length) is language-specific; 
male/female differences depend in part on the language or dialect that they speak (Johnson, 
2005). This language-specificity of gender differences suggests that there is more involved 
than just vocal tract length difference. Instead, there appears to be a performative aspect 
of gender that is overlaid on physical sex differences in vocal tract length. Secondly, it has 
been observed that perceptual talker normalization effects are conditioned to some degree 
on higher-level factors that are given by prior phonetic context (Ladefoged & Broadbent, 
1957; Johnson, 1990), visual context (Strand & Johnson, 1996), or even experimenter 
suggestion (Johnson, Strand, & D’Imperio, 1999).

Despite these observations about speech perception, there are a couple of reasons 
to suppose that vocal tract length normalization might be a component of the speech 
perception process. First, the perception of a conspecific individual’s body size is important 
for social organization in many species (e.g., Harrington & Mech, 1979), and there is 
evidence that vocalizations are used to convey individual characteristics such as size 
(Reby & McComb, 2003). This suggests that the perception of vocal tract length may be 
evolutionarily prior to linguistic communication, so language processing may be overlaid 
on a cognitive structure that already included vocal tract length perception. Second, there 
are regions of the brain involved in talker perception that do not overlap with regions 
involved in speech perception (e.g., Van Lanker, Kreiman, & Cummings, 1989; Johnson 
& Sjerps, to appear), suggesting that the perceptual system may include processes that 
compute talker information that can be mixed with phonetic information in a stream that 
produces ‘talker neutral’ phonetic information.

1.2. Extrinsic normalization
One reason to believe that vocal tract length normalization is not a viable mechanism for 
speech perception is that, as usually formulated, it relies on information that is extrinsic to 
the vowel. That is, it is usually assumed that the estimation of vocal tract length is computed 
over a collection of vowel tokens—information beyond what is available intrinsically in 
the vowel to be classified. Common experience, and controlled experimentation confirm 
that isolated vowels are accurately recognized (Nearey, 1989; Strange, Jenkins, & Johnson, 
1983). This suggests that each vowel contains the information that is needed for its own 
recognition, and this intrinsic information is usually sufficient for vowel recognition.

Lammert and Narayanan’s (2015) finding is relevant for this discussion. Building on 
earlier work in speech engineering (Paige & Zue, 1970; Kirlin, 1978; Wakita, 1977), 
they devised a regression method using the frequencies of formants F1-F4 to estimate 
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vocal tract length over short stretches of speech. Vocal tract length normalization using 
four formants F1-F4 should be less reliant on the specific vowel tokens that are used to 
calculate normalization parameters than methods like z-score normalization (Lobanov, 
1971) that normalize F1 (for example) on the basis of information about the distribution 
of F1 in a set of vowel measurements. Obviously, you cannot accurately estimate the 
distribution of a formant’s frequencies from a single token, so the Lobanov normalization 
method cannot be a model of how listeners identify (and normalize) isolated vowels. On 
the other hand, in vocal tract length normalization, information from F1-F4 determines 
a normalization scale factor, so each vowel contains a formant pattern within which to 
evaluate (and normalize) the formants.

1.3. Descriptive normalization
Regardless of whether vocal tract length normalization is done in speech perception, 
descriptive studies of language phonetic systems rely on vowel normalization algorithms 
to compare speech produced by different talkers or groups of talkers (Disner, 1980; Adank, 
Smits, & van Hout, 2004). Methods used in these studies are sometimes based on general-
purpose statistical normalization techniques such as range normalization (Gerstman, 
1968), or z-score normalization (Lobanov, 1971), but more specialized methods using 
what could be called ‘mean normalization’ (the ratio of x to the mean of x) are also widely 
used (Nearey, 1978; Watt & Fabricius, 2002).

In vocal tract length normalization (Nordström & Lindblom, 1975), a single normalization 
scale factor is derived from an estimate of the length of the speaker’s vocal tract. An 
acoustic factor related to vocal tract length is ϕ, the fundamental frequency of vocal tract 
resonances in an unconstricted vocal tract (Paige & Zue, 1970; Kirlin, 1978; Lammert & 
Narayanan, 2015). The factor ϕ is equal to F1 and the other formants are on odd harmonics 
of this value: F2 = 3ϕ, F3 = 5ϕ, F4 = 7ϕ. ∆F is simply 2ϕ, and is an estimate of formant 
spacing in an unconstricted vocal tract (Reby & McComb, 2003), where F1 = ½*∆F; 
F2 = 1½*∆F; F3 = 2½*∆F, etc. Because a single normalization scale factor is used to 
scale the formants (rather than a separate factor for each formant), this method is called 
a ‘uniform’ normalization method.

Despite its basis in the acoustic theory of speech production and the interpretation of 
the normalization scale factor in terms of a physical characteristic of the talker, vocal tract 
length normalization was rejected almost as soon as Nordström and Lindblom (1975) 
proposed it, because it did not seem to work very well. However, there has been significant 
progress in deriving more accurate vocal tract length estimates from the acoustic vowel 
spectrum, so a reconsideration of vocal tract length normalization is due.

1.4. Organization
This paper will introduce the ∆F method of vocal tract length normalization in 
Section 2. Section 3 will describe the methods used in two studies of vowel normalization 
techniques. The results of the studies are presented in Section 4, and the paper concludes 
with recommendations in Section 5. The aims of the paper are to evaluate ∆F vowel 
normalization as a practical technique for acoustic analysis of language data, and also to 
gauge the feasibility of vocal tract length normalization as a perceptual mechanism.

2. Methods for vocal tract length normalization
The earliest use of vocal tract length as a normalization factor was by Nordström and 
Lindblom (1975). They calculated the average third formant (F3) frequency in open 
vowels (where the frequency of F3 is easily distinguished from F2) and used this to 
estimate the talker’s vocal tract length. Vocal tract length was then used to scale a talker’s 
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vowel formant measurements onto a ‘standard’ (i.e., male) vocal tract. We can avoid the 
male-centric bias of this approach by using a talker-independent measurement scale—an 
estimate of formant spacing in an unconstricted vocal tract, the ∆F.

Speech engineers have devised measures of vocal tract length from vowel acoustics 
(Paige & Zue, 1970; Wakita, 1977; Kirlin, 1978) for use in automatic speech recognition 
and speaker identification (Eide & Gish, 1996; Lee & Rose, 1998). For example, Kirlin 
(1978) used information from the four lowest formants and estimates of formant variances 
to weight the contributions of formants. He treated “each formant as a noisy estimator” 
of vocal tract length, so in his calculation, because F2 has large variance, it contributes 
less to the vocal tract length estimate. Lammert and Narayanan (2015) published an 
important study in this line. They compared the vocal tract length predicted from acoustic 
measures to estimates of vocal tract length measured from magnetic resonant imaging 
(MRI) of the vocal tract, as well as computer simulated vocal tracts of known length. They 
found a family of regression formulas that predict vocal tract length from the first four 
formant frequencies of vowels, weighting formants as Kirlin did but finding the weights 
by regression to known vocal tract length.

Following the analysis outlined by Lammert and Narayanan (2015) and building on the 
line-fitting approach of Reby and McComb (2003; see Figure 1), a talker’s ∆F is directly 
estimated by scaling formant frequencies by their formant number (F1, F2, F3, F4, etc.) as 

Figure 1: An illustration of Reby and McComb’s (2003) direct estimation approach for finding ΔF 
from formant measurements. The average spacing between vowel formants (ΔF) is the slope 
of the line that relates formant number to formant frequency. The figure shows the formant 
frequencies of a vocal tract that is 17.5 cm long with no constrictions (a uniform tube). ΔF is 1000 
Hz, and F1 is 500 Hz, F2 is 1500 Hz, etc.
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in formula (1). Note that each formant (F1-F4) of each vowel provides an estimate of ∆F. 
The sum in (1) can be taken over all of the vowels for a talker that are available in a dataset 
so missing values have a limited impact on the estimate. It is important to note that even 
though F1 and F2 vary substantially for different vowels, averaged over a representative 
dataset they approximate the frequencies of an unconstricted vocal tract—a uniform tube. 
Section 3 will compare the direct estimation of ∆F using the average formant spacing 
method in (1) with the optimized empirical method presented by Lammert and Narayanan 
(2015). Kirlin’s (1978) a posteriori method was also implemented and results from this 
method of vocal tract length estimation will also be reported. Once we have calculated 
∆F, then the talker’s vocal tract length can be calculated from ∆F by formula (2), and the 
normalized vowel formants are calculated using ∆F as in (3).

(1) 
 

   
  

 
1    ,0.5

m n ij
j i

FF mn i
 where i = formant number (1…4), and j is token number

(2)   /2 ,VTL c F  c = 34000 cm/s, the speed of sound, warm moist air

(3)    / ,ij ijF F F  normalized formant frequencies

This average formant spacing method of estimating vocal tract length (VTL) is essentially 
perfectly correlated with Lammert and Narayanan’s (2015; henceforth L&N) estimated 
VTL on the Hillenbrand, Getty, Clark, and Wheeler (1995) dataset (r2 = 0.998, Figure 2 
below), while the Nordström and Lindblom (1975) estimate which was based on F3 alone, 
is much less strongly correlated with L&N (r2 = 0.829). Kirlin’s (1978) method was also 
closely correlated with the L&N method (r2 = 0.963). The strong correlations between the 
average spacing (formula 1) and L&N methods is an indication that with a full sample of 
vowels for a talker, the average spacing method is a valid measure of apparent vocal tract 
length. The key difference between L&N’s data-driven approach and the average spacing 
approach is that the average spacing approach assumes that the formant values will, on 
average, be equally spaced (as in Figure 1). The high correlation between the methods 
can be seen as a validation of this assumption for a typical phonetic dataset. As seen in 
Figure 2, the length estimated by the average formant spacing method is consistently 
about 0.8 cm longer than the length estimated by the L&N method.

Figure 2: Vocal tract length estimates for the talkers in Hillenbrand et al. (1995), as calculated using 
the average spacing formula (4) and the two formulas calculated by Lammert and Narayanan 
(2015): formula (8) with no zero intercept, and formula (11), which does have a zero intercept. 
The dashed line is the identity line, y = x.
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Formula (3) shows that ∆F can be used as a unit of measure for vowel formant 
frequencies, putting vowel formants from all vocal tracts on the same measurement scale. 
The normalized F1’ value is given as F1/∆F and is expected to be equal to 0.5 for a 
uniform tube of any length, the normalized F2’ is F2/∆F and is expected to be equal to 
1.5 for any uniform tube, and so on. This is ∆F vocal tract length normalization, where 
∆F can be estimated in several different ways—from F3 alone (Nordström & Lindblom, 
1975), using the average formant spacing approach (formula 1), or using Lammert and 
Narayanan’s (2015) regression fits, or Kirlin’s (1978) weight by variance method. This use 
of ∆F as a vowel normalization factor, which has not been proposed before, is the main 
practical contribution of this paper.

3. Methods
3.1. Data sets
The data analyzed in this paper are the published American English vowel production 
data from Peterson and Barney (1952) and Hillenbrand et al. (1995), as distributed by 
Santiago Barreda in his ‘phonTools’ package for the R statistical programming language.

3.2. Normalization formulas
The data were analyzed in the R statistical programming language, and the normalization 
algorithms were implemented as illustrated in Table 1. As the variable names in the last 
four rows of the table make clear, the normalizing factor ∆F can be calculated by any 
method that provides an estimated vocal tract length from the acoustic vowel formants. 
The Watt & Fabricius method prescribes taking the mean of formants from particular 
judiciously selected vowel qualities to ensure that the center of the talker’s acoustic 
vowel space is adequately captured, to provide a cross-linguistically consistent scale. 
The implementation here used the mean of the entire sample as the estimate of the 
center of the acoustic vowel space. This works just as well for vowel classification within 
language, and avoids subjectivity or other mistakes in the selection of the exemplary 
vowel tokens.

Table 1: Some details, in R, of how the normalization algorithms were implemented. In these code 
snippets ‘f1,’ ‘f2,’ ‘f3’ are arrays of vowel formant measurements for a particular talker. The first 
three rows are non-uniform methods and the last four rows are uniform methods.

Method R code 

Lobanov, z-score F1’ = scale(f1);

Watt & Fabricius F1’ = f1/mean(f1);

Nearey 1, non-uniform F1’ = exp(log(f1) – mean(log(f1)));

Nearey 2, uniform mf = mean(c(log(f1),log(f2),log(f3)));
F1’ = exp(log(f1)-mf);

Nordström & Lindblom ∆F = mean(f3[f1>600]/2.5);
F1’ = f1/∆F;

Kirlin x = mean(f1/146^2) + 3*mean(f2/485^2) + 5*mean(f3/322^2) + mean(f1)/40^2;
∆F = 2(x*1051.2);
F1’ = f1/∆F;

Lammert & Narayanan ∆F = 2*(262 + mean(0.14*f1) + mean((0.16*f2)/3) + mean((0.25*f3)/5));
F1’ = f1/∆F;

average spacing ∆F ∆F = mean(c(f1/0.5, f2/1.5, f3/2.5));
F1’ = f1/∆F;
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3.3. Vocal tract length coefficients
The regression coefficients used in this paper for the Lammert & Narayanan (2015) method 
are different from the ones they published because the datasets used here only include the 
first three formants, while L&N used F1–4 to estimate vocal tract lengths. Dr. Lammert 
was kind enough to provide two sets of coefficients for regressions fitted from F1–3 for 
simulated data. Without an intercept (β1 = 0.28, β2 = 0.31, β3 = 0.47) the RMS error in 
estimated vocal tract length is 1.91 cm. A regression formula that includes an intercept 
term (β0 = 262, β1 = 0.14, β2 = 0.16, β3 = 0.25) leads to a smaller error of estimated 
vocal tract length (1.22 cm).1 The classification studies in the next section used the second 
formula, the one with an intercept term. The ∆F estimates of the intercept formula tend 
to be regulated, drawn away from extremely short or long estimates, by the β0 constant, 
as further discussed below.2

The comparison of the Lammert and Narayanan (2015) coefficients to the average 
spacing coefficients, formula (1), is complicated by a slight difference in how they are 
presented and calculated. Formula (1) is reproduced here as (4) and can be expanded as 
(5) in the case where we have three formants per vowel. Simplifying (5) into an expression 
similar to the form used by L&N, we get (7).

(4)
 

 
   

  
 

1   ,  0.5
m n ij
j i

FF mn i  
where i = formant number

(5)    1/3 ( 1/0.5 2/1.5   3/2.5)F F F F
(6)     1/3 (2 1 0.666 2 0.4 3)* * *F F F F
(7)    0.6667 1 0.222 2 0.1333 3* * *F F F F

Lammert and Narayanan’s no-intercept expression for ∆F with three vowel formant 
measurements is in (8). Simplifying, we get equation (10).

(8)    2(0.28 1 (0.31 2)/3 (0.47 3)/5)* * *F F F F
(9)    2(0.28 1 0.10333 2 0.094 3)* * *F F F F
(10)    0.56 1 0.20666 2 0.188 3* * *F F F F

Now we can compare the coefficients used in the Lammert and Narayanan (2015) 
calculation for three formant vowels (10) with the average spacing formula (7). The L&N 
formula has a larger coefficient for F3 and smaller coefficients for F1 and F2, than are 
found in the average spacing expression. This is likely to lead to better vocal tract length 
estimates when only one or two vowel tokens are available because the frequency of 
F3 is less variable across vowels than are F1 and F2. However, as seen in the left panel 
of Figure 2, with a full set of data, this method (formula 8) produces vocal tract length 
estimates that differ from the estimates given by the average-spacing formula (4) by only 

 1 The measurement errors reported for these estimates of vocal tract length are about 10% of the length of a 
typical vocal tract, which may seem a bit large. It is, however, a small enough error to be able to correctly 
classify speakers in the Hillenbrand et al. (1995) data set as ‘male,’ ‘female,’ or ‘child’ with 90% accuracy 
based on the L&N estimate of vocal tract length (formula 8). This was measured using the methods for sup-
port vector machine classification that are described below for study 1. 

 2 Though the coefficients for four formant data using Lammert & Narayanan’s (2015) method are published 
in their paper, for completeness and ease of reference they are repeated here: with intercept (formula 11): 
β0 = 52, β1 = 0.078, β2 = 0.099, β3 = 0.101, β4 = 0.609, and without intercept (formula 8): β1 = 0.089, 
β2 = 0.102, β3 = 0.121, β4 = 0.669.
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a constant (probably due to the difference between the acoustic effective length of the 
vocal tract versus the actual length of the vocal tract; Johnson, 2011, p. 42).

Lammert and Narayanan (2015) also fit a formula for estimating vocal tract length 
that includes an intercept term. This provides a slightly more accurate measure of vocal 
tract length with a small set of vowel tokens, by regularizing the estimated vocal tract 
length. This is illustrated in the right panel of Figure 2, which compares the Lammert and 
Narayanan VTL estimates (formula 2) using a regression formula with an intercept term 
(11), to the VTL estimates produced by average spacing (4) for the Hillenbrand et al. data. 
The main thing to notice is that the range of VTL estimates for formula (11) is smaller 
(min=13.6 cm, max=16.75cm) than the range given by the non-regularized formula (8).

(11)     2(262 0.14 1 (0.16 2)/3 (0.25 3)/5)* * *F F F F
(12)     524 0.28 1 0.10666 2 0.1 3* * *F F F F

The regression formula is simplified as (12). Notice that the coefficients for F1-3 are 
about half as large as in the no-intercept formula (10). If we enter F1=500, F2=1500, 
and F3=2500 into formula (12) we get 1074 Hz. So, about one half of the value of ∆F 
is determined by the formant frequencies and the rest is determined by the intercept 
(β0 = 524). This will tend to shrink the range of ∆F, and with it the range of estimated 
vocal tract lengths. The formula in (11) results in better vowel classification when vocal 
tract length is estimated from only a few vowel tokens and was used in the analyses 
reported here. Unsurprisingly, using Lammert and Narayanan’s no-intercept estimate 
of ΔF (formula 8) resulted in classification accuracy that was almost identical to that 
reported for the average-spacing ΔF method.

3.4. Study 1: Classification performance
For each normalization method, normalization factors (∆F, log(mean), SD, etc.) were 
calculated over all vowel tokens for a talker, and then the talker’s vowel formant 
frequencies were normalized using the code in Table 1. After all of the vowel formant 
frequencies in the dataset were normalized, support vector machines (SVM, Cortes & 
Vapnik, 1995) were used to classify the vowels. SVM is a supervised machine learning 
technique that, in this case, can be used to find optimal classification boundaries between 
the vowel categories given the data. The results of SVM classification can be used to 
infer an objective estimate of the level of vowel separation in the data. The classifiers 
built in this study used a radial basis function with gamma = 0.5. These are the default 
parameters for the R function svm(). Classification performance was evaluated by using 
the trained model to predict the category membership of each item in the training set and 
the percent correct vowel classification was computed from these predictions.

The normalized vowels were also used to build SVM classifiers to identify the talker 
group (male, female, child) of each token. Assuming that the goal in normalization is to 
remove talker differences, then a lower percent correct talker classification is an indication 
of better normalization performance.

The studies in this paper neglect two sources of vowel intrinsic information that 
have been shown to be useful both in automatic speech recognition and human speech 
perception—fundamental frequency of voicing (Fujisaki & Kawashima, 1968), and vowel 
inherent spectral change (Nearey & Assman, 1986). Thus, the classification results here 
are a minimal baseline.

3.5. Study 2: Effects of sample size
As in study 1, the vowel formant data to be classified in the second study were the full 
Hillenbrand et al. (1995) or the Peterson and Barney (1952) datasets. However, where in 
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study 1 the normalization factors were calculated over all of the tokens for a talker, in this 
study the vowels were normalized with scale factors that were computed from randomly 
selected subsets of the available vowel data.

Different tests were conducted with normalization based on different numbers of vowel 
tokens per talker. Subsets of size 1, 2, 4, 6, or 9 tokens per talker were tested in the 
Hillenbrand data set, and subsets of size 1, 2, 5, 10, 15, and 20 tokens per talker were tested 
in the Peterson and Barney data set. In each test, a random subset of vowel tokens was 
selected and then normalization scale factors for each of the several normalization methods 
were computed from the randomly selected tokens. These normalization scale factors were 
then used to normalize the full set of vowel tokens (all of the tokens in the corpus), and as 
in study 1, SVM vowel classifiers were then built and the classification accuracy over the 
test data set was noted. This process was repeated 50 times in each test to give an estimate 
of the variability of the accuracy scores for a given normalization subset size.

When the subset was a single token, the formant ‘mean’ that was used in the non-
uniform normalization methods was set equal to the value of that formant in the selected 
token. The standard deviation in the Lobanov method was also set equal to the formant 
value when only a single token was the basis for normalization parameters.

Two additional tests were conducted. In one, a single token of the vowel [ə] was 
used to calculate normalization factors, and in the second, formants of the corner vowels 
[i, u, ɑ] were used to define the normalization statistics.

4. Results
4.1. Study 1: Classification accuracy
As shown in Table 2, vowel classification with ∆F (average-spacing or Kirlin’s VTL method) 
is close to state of the art, with vowel classification accuracy approaching 90% correct for 
the Peterson and Barney (1952) data set, and about 80% correct for the Hillenbrand et al. 
(1995) data set. Also, reduction of talker information in vowels was comparable to the state 
of the art achieved by the non-uniform normalization methods proposed by Nearey (1978), 
Lobanov (1971), and Watt & Fabricius (2002). The Lammert & Narayanan (2015) method 

Table 2: SVM percent correct identification of vowels and talker group (man, woman, child [MWC], 
or man, woman, boy, girl [MWBG]) in the vowel formant data reported by Peterson and Barney 
(1952; PB52) and Hillenbrand et al. (1995; H95) by different vowel normalization methods. Non-
uniform vowel normalization refers to methods that use a different normalization factor for 
each formant. Uniform normalization refers to methods that use a single uniform scaling factor 
(such as vocal tract length) for all of the formants produced by a person.

Method Type Vowels Talker Group

PB52 H95 PB52 H95

Chance — 12.5% 10% 40% 30%

No normalization (F1 & F2) NONE 77.3 62.9 66.7 53.2

∆F (Nordström & Lindblom) Uniform 82.5 72.7 49.8 41.9

∆F (Lammert & Narayanan) Uniform 86.3 73.4 59.6 47

Mean log Fs (Nearey 2) Uniform 87.9 77.8 52.0 43.2

∆F (Kirlin) Uniform 88 78.4 52.2 41.7

∆F (average-spacing) Uniform 88.2 78.1 50.9 42.9

Mean log F (Nearey 1) Non-uniform 90.9 80.1 51.6 42.4

Mean F, ratio (Watt & Fabricius) Non-uniform 90.8 80.7 50.8 41.4

Z-score normalization (Lobanov) Non-uniform 92.6 84.4 49.3 39.8
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of VTL estimation (with intercept) is less accurate. The Lammert & Narayanan no-intercept 
method (not shown in the table) is virtually the same as the average spacing method.

Vowel classification with average-spacing ∆F normalization is much better than with 
Nordström & Lindblom’s (1975) method of VTL estimation, but not quite as good as the 
best non-uniform normalization methods. The ∆F method is also quite comparable with the 
other models in removing much of the talker group information (e.g., man, woman, child). 
It is worth noting, however, that chance ‘talker group’ identification (calculated with 1000 
random permutations of the datasets) is 40% correct in the Peterson and Barney (1952) 
corpus, and 31% correct in the Hillenbrand et al. (1995) corpus, so none of the methods 
fully ‘normalize out’ this information. This is a neglected point in vowel normalization 
studies (but see the recent insightful discussion in Barreda & Nearey, 2018, who reference 
a discussion in Hindle, 1978). We ‘normalize’ vowel formant measurements, but gender 
and age differences are not fully removed. Knowing when a method ‘over-normalizes’ and 
removes talker variability that actually ‘should’ remain because it is sociolinguistically 
significant, is an important problem. This highlights the need for a principled approach, 
grounded in acoustic theory, and also means that regardless of the normalization method 
used, the residue of talker variation left behind by normalization should be statistically 
modeled, because we can be sure that some talker information remains.

Figure 3 shows plots of normalized and unnormalized vowel formants for the Hillenbrand 
et al. (1995) data set. These plots show that vocal tract length normalization using the ∆F 
method results in a normalized vowel space that is remarkably similar to spaces obtained 
with non-uniform methods that require more, and less interpretable, parameters. Note 
that the center of the vowel space is marked by the horizontal and vertical lines. For the 
Nearey, Lobanov, and Watt & Fabricius methods these lines mark the mean F1 and F2; for 
the ∆F methods they mark the resonances of the uniform tube.

This analysis indicates that vocal tract length normalization using a single interpretable 
normalization parameter (∆F—an estimate of formant spacing in a vocal tract with 
no constrictions) is comparable to other vowel normalization methods. The talker-
independent dimension that is used in this normalized representation is derived from both 
the formants being normalized (F1 and F2), as well as higher formants (F3 in this case, 
and also F4; Lammert & Narayanan, 2015), which are less likely to vary as a function of 
the particular inventory of vowels found in a language. Higher formants, F3 and F4, are 
sometimes not measured. This study suggests that they should be, and that this additional 
information about the talker’s vocal tract could be extremely valuable in interpreting the 
F1/F2 vowel space.

Because the normalization factor ∆F is directly interpretable in terms of a physical 
property of the talker, vocal tract length normalization is valid for cross-linguistic 
comparison of vowel spaces. In addition, it is remarkable that the state of the art in vowel 
formant normalization is almost entirely reducible to normalization in terms of the talker’s 
vocal tract length. This has not been observed before because phoneticians have not used 
a measure calibrated to vocal tract length in our vowel normalization schemes. Arguably, 
Nearey’s (1978) uniform normalization technique, with mean logF*, uses a measure that 
reflects vocal tract length, although because it is not calibrated to vocal tract length it is 
a problematic measure, giving incomparable measurement scales for values normalized 
over mean logF* (F1..F4) versus values normalized over mean logF* (F1..F3). The ∆F 
measurement scale is the same whether ∆F is estimated from three formants or four.

4.2. Study 2: Effects of sample size
Beyond the practicalities of having a workable vowel normalization scheme for comparing 
dialects and languages, the discovery that vocal tract length normalization is a powerful 
method for reducing some of the talker variability found in speech leads one to wonder 
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whether vocal tract length normalization might play a role in speech perception. Study 2 
tested this by limiting the amount of information available to the normalization algorithms 
in tests of vowel classification using the Hillenbrand et al. (1995) and Peterson and Barney 
(1952) datasets. Limiting the information available for normalization creates a situation 
that Barreda and Nearey (2018) call ‘type B’ over-normalization which is “due to noise in 
the estimated speaker parameters used for normalization.”

Figure 3: Upper left: F1 and F2 vowel formant frequencies from Hillenbrand et al. (1995). Other 
panels: the same data normalized by several of the methods identified in the text.
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Figure 4 shows the results of study 2 on the Hillenbrand et al. (1995) data set, with 
normalization based on different numbers of randomly selected vowels (1, 2, 4, 6, or 9 
tokens), or basing vowel normalization on the corner vowels [i], [u], and [ɑ], on schwa 
[ə], or on the entire set of observations from each talker (12 tokens). For these later 
models (12 tokens, schwa, or corner vowels) there was no repeated random selection of a 
basis for extrinsic normalization, so only one SVM was fit for each normalization method.

Figure 5 shows analogous results for the Peterson and Barney (1952) dataset. With 
both the HIllenbrand et al. (1995) data and the Peterson and Barney (1952) data, the 
results show that uniform scaling techniques (Nearey’s uniform scaling method, the ΔF 
methods—Kirlin, Ave-spacing, and Lammert & Narayanan) improve vowel classification 
accuracy over unnormalized classification even with a very small random sample of 
speech. While non-uniform methods, i.e., those that scale each formant using information 
in the corpus about that formant (z-score normalization [Lobanov], mean ratio [Watt & 
Fabricius], or log mean difference [Nearey], non-uniform), are more dependent upon 
the particular vowel tokens that are used to calculate the vowel normalization factors, 
and need either a carefully chosen sample, or a large sample. Random selection of vowel 
tokens, as done here, has a catastrophic effect on the non-uniform methods if only a few 
vowel tokens are taken to represent the talker. In practice, where a large corpus of vowel 
measurements is available, this does not matter, and in fact the non-uniform methods may 
reduce talker differences better than the uniform methods in corpus analysis. But these 
methods are brittle and are generally inappropriate as models of the perceptual process.

Testing the Watt & Fabricius method with randomly selected vowel tokens, as done 
here, especially goes against the spirit of that method because its main feature is a 
judicious selection of vowel tokens to represent the full possible range of F1 and F2 

Figure 4: Results of SVM vowel classification of the Hillenbrand et al. (1995) vowels when the 
vowel normalization statistics are calculated over different numbers of randomly selected 
vowel tokens, or sets designed to be uniquely informative about the vowel space (the corner 
vowels) or the vocal tract (schwa). The order of the bars within each panel is indicated in the 
legend, reading top to bottom for the bars from left to right—e.g., Lobanov normalization is the 
leftmost bar in each panel. Classification with no normalization results in 62.9% correct vowel 
identification (see Table 2), which is indicated by the dashed horizontal line.
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for a talker. However, random selection of tokens is justified in this study because it is 
designed to evaluate the plausibility of extrinsic normalization as a component of speech 
perception. Listeners are not presented with a judicious selection of vowel tokens, but 
have to deal with whatever the talker says. It is worth noting that even without judicious 
selection of vowel tokens, Watt & Fabricius’ mean ratio representation has very good 
vowel classification performance when a large sample of tokens is taken; however the 
normalization scale may depend on the specific vowel inventory. Regardless, the Watt & 
Fabricius method was not designed as a model of perceptual vowel normalization and is 
clearly not a feasible one.

5. Conclusion
This study introduced a new method of vowel normalization, the ∆F method. This is 
explicitly a vocal tract length normalization method, and represents vowels on a talker-
independent measurement scale—the average formant spacing of the talker, their ∆F. 
Using a metric that is closely related to the length of the talker’s vocal tract, we are able 
to produce a vowel space in which vocal tract length effects have been removed. The 
resulting vowel space is largely equivalent to Nearey’s (1978) log-mean uniform vowel 
normalization method, but is explicitly rationalized in terms of vocal tract length and has 
a consistent unit of measure whether 3 formant or 4 formant measurements are used. ∆F 
normalization based on Lammert and Narayanan’s (2015) intercept method of vocal tract 
length estimation is more robust when only a few tokens are available for a talker, but 
provides less vowel category separation in models built over a larger corpus.

This study has also shown that non-uniform methods, that rely on within-formant 
scale factors (Nearey’s log-mean non-uniform method, Lobanov’s z-score normalization, 
and Watt & Fabricius’ mean ratio method) are highly sensitive to the vowel tokens that 
are chosen as the basis for calculating the normalization scale factors. This leads to the 

Figure 5: Results of SVM vowel classification of the Peterson and Barney (1952) vowels when 
the vowel normalization statistics are calculated over different numbers of randomly selected 
vowel tokens, or sets designed to be maximally informative about the vowel space (the corner 
vowels) or the vocal tract (schwa). Classification with no normalization results in 77.3% correct 
vowel identification (see Table 2), which is indicated by the dashed horizontal line.
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conclusion that these methods are not plausible as models of the cognitive processes 
involved in speech perception. Also, in practical phonetic description of languages 
this dependence on particular vowel tokens for calculating normalization scale factors 
complicates cross-linguistic or cross-dialect comparisons of vowels spaces. If languages 
have different vowel inventories, then the unit of measure for normalized vowels will 
not be comparable across languages. This leads one to try to determine formant ranges 
indirectly (Fabricius, Watt, & Johnson, 2009) in order to have normalized values that 
can be cross-linguistically compared. Vocal tract length normalization does not have as 
much of a problem with this because it is less sensitive to the composition of the vowel 
inventory, and not very sensitive to the particular vowel tokens that represent a talker.

The practical conclusion is that ∆F normalization likely has advantages over other 
methods for speech researchers. It produces good classification accuracy, is robust to 
sample size variation across talkers, is independent of the vowel inventory or phonetic 
vowel realizations in the language or dialect studied, puts all talkers, regardless of 
language or dialect, on the same measurement scale, and is rationalized in terms of the 
acoustic theory of speech production.

Finally, the results of this study also encourage us to think that listeners may be able 
to employ a type of vocal tract length normalization with very little extrinsic context. 
Non-uniform normalization schemes are untenable when faced with a single isolated 
vowel, but a normalization scheme in which vocal tract length is estimated from the 
entire spectrum of a vowel (see e.g., Wakita, 1977; Bladon, Henton & Pickering, 1984; 
Lee & Rose, 1998), does seem to be a plausible perceptual mechanism even with isolated 
vowels. Future research may bear this out.
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