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This study investigated the effect of speaking style on speech segmentation by statistical learning 
under optimal and adverse listening conditions. Similar to the intelligibility and memory benefits 
found in previous studies, enhanced acoustic-phonetic cues of the listener-oriented clear speech 
could improve speech segmentation by statistical learning compared to conversational speech. 
Yet, it could not be precluded that hyper-articulated clear speech, reported to have less pervasive 
coarticulation, would result in worse segmentation than conversational speech. We tested these 
predictions using an artificial language learning paradigm. Listeners who acquired English before 
age six were played continuous repetitions of the ‘words’ of an artificial language, spoken either 
clearly or conversationally and presented either in quiet or in noise at a signal-to-noise ratio 
of +3 or 0 dB SPL. Next, they recognized the artificial words in a two-alternative forced-choice 
test. Results supported the prediction that clear speech facilitates segmentation by statistical 
learning more than conversational speech but only in the quiet listening condition. This suggests 
that listeners can use clear speech acoustic-phonetic enhancements to guide speech processing 
dependent on domain-general, signal-independent statistical computations. However, there was 
no clear speech benefit in noise at either signal-to-noise ratio. We discuss possible mechanisms 
that could explain these results.

Keywords: Clear speech; speech segmentation; statistical learning; noise; artificial language 
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1. Introduction
An important task in understanding spoken language is the segmentation of continuous 
speech into discrete words. Adult listeners are able to discover word boundaries and extract 
possible word forms via statistical learning—that is, by tracking transitional probabilities 
across syllables in the speech stream (Saffran, Newport, & Aslin, 1996). For example, two 
syllables that frequently co-occur are likely to be perceived as word-internal, whereas 
two syllables with a low co-occurrence are interpreted as spanning a word boundary. This 
form of learning may occur without attention to the speech signal (Fernandes, Kolinsky, & 
Ventura, 2010; Saffran, Newport, Aslin, Tunick, & Barrueco, 1997) and has been observed 
in infants (Saffran, Aslin, & Newport, 1996; Thiessen & Saffran, 2003, 2007). Such learning 
occurs in the visual modality as well (Kirkham, Slemmer, & Johnson, 2002; Turk-Browne, 
Jungé, & Scholl, 2005), suggesting that speech segmentation by statistical learning is 
rooted in a domain-general learning mechanism.

Listeners also exploit a variety of sub-lexical acoustic-phonetic cues for segmentation 
(for reviews, see Cutler, 2012; Davis, Marslen-Wilson, & Gaskell, 2002). One sub-
segmental signal-driven cue that listeners rely on is coarticulation, or the articulatory 
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overlap between neighboring segments (see Farnetani & Recasens, 2010, for a review on 
this topic). In general, segments are more coarticulated when they occur within a word 
or across a lower prosodic boundary than when they occur across words or span a higher-
level prosodic boundary (Byrd, 1996; Byrd & Saltzman, 1998; Cho, 2004; Fougeron & 
Keating, 1997). Fernandes and colleagues demonstrated that coarticulatory information 
facilitated segmentation via statistical learning (Fernandes et al., 2010; Fernandes, 
Ventura, & Kolinsky, 2007). Using an artificial language learning paradigm, Fernandes 
et al. (2007) presented listeners with long speech streams containing strings of repeating 
syllables. Listeners were required to track the transitional probabilities across syllables for 
successful word segmentation. The results indicated that segmentation improved when 
segments within the words in the speech streams were coarticulated, compared with a 
condition where coarticulation cues were absent or incongruent with the transitional 
probabilities. Furthermore, when the speech signal was degraded by adding noise, the 
role of coarticulation was diminished and listeners relied more on the signal-independent 
statistical properties. The results showed that the signal-driven coarticulatory information 
enhances segmentation by statistical learning above and beyond domain-general statistical 
computations under optimal listening conditions.

One way in which speech signal itself can be enhanced is through conversational-to-
clear speech modifications. Within the H&H theory (Lindblom, 1990), these modifications 
are understood as arising from movement along a continuum of hypo- and hyperspeech 
in response to talker- and listener-oriented forces in the communicative context. Clear 
speech occurs when the speaker shifts toward the hyperspeech end of the continuum 
in order to make their speech more intelligible for the listener. Conversational speech 
constitutes the speaker’s shift toward the hypospeech end in optimal listening situations 
in order to conserve articulatory effort. 

There are a number of such goal‐oriented modifications in which talkers adapt their 
output in response to communication challenges, including noise‐adapted speech, 
infant‐directed speech, or speech produced in response to vocoded speech (for clear  
speech reviews, Pichora-Fuller et al., 2010; Smiljanić, 2021; Smiljanić & Bradlow, 
2009). In line with previous work, we focus on the clear speech aimed at enhancing 
intelligibility for adult interlocutors with perceptual difficulties arising from hearing loss 
or low proficiency. Even though the various speaking styles share a number of features, 
clear speech modifications involve different acoustic‐phonetic goals from, for instance, 
modifications aimed at increasing affective prosody to capture children’s attention. The 
clear speech modifications typically include a decrease in speaking rate, an increase in 
vocal levels, a wider F0 range and higher F0 mean, more salient stop releases, vowel 
and consonant contrast enhancement, greater obstruent root-mean-square (RMS) energy, 
and increased energy at higher frequencies (Bradlow, Kraus, & Hayes, 2003; Ferguson & 
Kewley-Port, 2002, 2007; Gilbert, Chandrasekaran, & Smiljanic, 2014; Granlund, Hazan, 
& Baker, 2012; Hazan & Baker, 2011; Krause & Braida, 2004; Liu et al., 2004; Maniwa, 
Jongman, & Wade, 2009; Picheny, Durlach, & Braida, 1986; Pichora-Fuller et al., 2010; 
Smiljanić & Bradlow, 2005; Van Engen, Chandrasekaran, & Smiljanić, 2012), and so on.

It is well-established that clear speech acoustic-phonetic adjustments benefit perception 
for various communicative situations and listener populations (for reviews, see Pichora-
Fuller et al., 2010; Smiljanić, 2021; Smiljanić & Bradlow, 2009; Uchanski, 2005). The 
ways by which they aid the listener include augmenting the speech signal, enhancing 
language-specific phoneme distinctions, and facilitating linguistic processing and 
cognitive functioning associated with speech perception and auditory memory (Bradlow 
& Bent, 2002; Cooke et al., 2013; Ferguson, 2012; Keerstock & Smiljanić, 2018, 2019; 
Krause & Braida, 2002; Payton et al., 1994; Picheny et al., 1985; Schum, 1996). There is 
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also evidence that clear speech reduces lexical competition and enhances lexical access. 
Scarborough and Zellou (2013), for example, showed that words with many phonological 
neighbors are produced with greater hyper-articulation in clear speech compared to 
words with few phonological neighbors and this facilitated lexical decisions for high-
neighborhood-density words. Van Engen (2017) similarly found that clear speech was 
helpful in reducing lexical competition for high-neighborhood-density words in noise for 
older adults. Finally, using a visual word recognition paradigm, van der Feest, Blanco, 
and Smiljanic (2019) showed that clear speech increased speed of word recognition for 
high-predictability sentences in quiet and in noise for young adult listeners. While none 
of these studies looked at speech segmentation, documented processing benefits suggest 
that clear speech could also make it easier for the listener to track statistical dependencies 
and improve segmentation.

Work by Palmer and Mattys (2016) provides evidence that at least some of the 
acoustic-phonetic adjustments typically associated with clear speech are beneficial for 
segmentation by statistical learning. Using the artificial learning paradigm, they showed 
that listeners’ statistical segmentation of trisyllabic nonwords (e.g., pabiku) from speech 
streams in which they were presented continuously was facilitated when the speech rate 
was slower than when it was faster. As they argue, this may be because a slower rate 
allows more time for representations stored in working memory to be refreshed before 
they are displaced by incoming input. Given that clear speech is characterized by a slower 
speaking rate (Behrman, Ferguson, Akhund, & Moeyaert, 2019; Ferguson & Kewley-
Port, 2002, 2007; Liu, Del Rio, Bradlow, & Zeng, 2004; Picheny et al., 1986; Smiljanić 
& Bradlow, 2005, 2009; Uchanski, Choi, Braida, Reed, & Durlach, 1996), Palmer and 
Mattys’s finding supports the prediction that it will have an advantage over conversational 
speech in segmentation by statistical learning.

With regard to coarticulation and speaking style adaptations, the findings are mixed. 
Under the H&H framework, coarticulation is viewed as a low-cost articulatory behavior 
(Farnetani & Recasens, 2010). Therefore, similar to other hyper-articulated forms such 
as strengthening in prosodically strong positions (Cho, 2004), more exaggerated listener-
oriented speech is expected to show coarticulatory resistance. Moon and Lindblom (1994) 
found that vowels in the /w___l/ frame produced in a hyper-articulated style by English 
speakers showed greater F2 displacements relative to those produced without attention to 
clarity, suggesting less coarticulatory influence from the neighboring consonants. Analogous 
findings have been obtained by studies comparing citation-form and spontaneous speech 
in French, Swedish, Spanish, and Catalan (Duez, 1992; Krull, 1989; Poch-Olivé et al., 
1989). In contrast, Bradlow (2002) found that for English and Spanish speakers, clearly 
produced CV syllables exhibited neither exaggerated nor reduced coarticulation compared 
to those that were conversationally produced. Similar maintenance of coarticulation 
across speaking styles was reported by Matthies et al. (2001). Furthermore, unlike the 
above-referenced studies, in which speakers followed instructions for different styles 
and might not speak with a true communicative intent, Scarborough and Zellou (2013) 
investigated anticipatory nasal coarticulation in vowel-nasal sequences under several 
communicative contexts, including one in which speakers completed an interactive task 
with a real listener. They found that compared to read speech elicited with instructions to 
speak clearly or imagine someone hard of hearing, spontaneous speech in this real-listener 
context showed greater hyper-articulation as evident in vowel space expansion and greater 
vowel-nasal coarticulation.

Nevertheless, while the presence of the listener in Scarborough and Zellou’s (2013) 
interactive task introduced a communicative intent, it did not imply a communicative 
difficulty that would explicitly motivate the speakers to adopt a more effortful, 
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listener-oriented speaking style. Recently, Guo and Smiljanić (to appear) applied a whole-
spectrum measure of coarticulation (Cychosz, Edwards, Munson, & Johnson, 2019; Gerosa 
et al., 2006) to analyze speech from the various communicative conditions of the LUCID 
corpus (Baker & Hazan, 2011), which include read speech elicited with instructions 
to speak clearly, spontaneous speech from an interactive task where pairs of speakers 
communicated in good listening condition, and spontaneous speech from the same task 
but with explicitly imposed communicative barriers (e.g., one speaker’s voice was vocoded 
or mixed with talker babble). Results indicated that the speakers coarticulated less when 
completing the task under any condition with communicative barriers compared to the 
no-barrier condition. Moreover, compared to read speech obtained with instructions to 
speak casually, read clear speech showed a similar extent of coarticulatory resistance as 
spontaneous speech in most of the barrier-present conditions. Taken together, the findings 
on the relationship between coarticulation and speaking style, though still mixed, suggest 
that clear speech could be less coarticulated than conversational speech. If this is the 
case, the prediction is that the relatively greater coarticulation in conversational speech 
may facilitate word segmentation by statistical learning (cf. Fernandes et al., 2007, 2010) 
compared to clear speech with relatively less coarticulation.

This prediction gains additional support from research investigating the effect of speech 
rate on statistical learning. Unlike Palmer and Mattys (2016), Emberson, Conway, and 
Christiansen (2011) found that when listeners were presented with speech streams 
consisting of nonwords (e.g., meep) that formed statistically coherent triplets, speeding 
up presentation rate facilitated their discovery of which nonwords constituted a triplet. 
This suggests that reducing the temporal distances between elements in speech promotes 
auditory grouping of the elements into larger units. Since conversational speech is 
characterized by a faster speaking rate and hence reduced temporal distances between 
syllables, it could lead to better grouping of syllables into discrete units than clear speech. 
Given the contradictory predictions, the main goal of this study was to assess the role of 
speaking style on segmentation by statistical learning.

We furthermore wanted to explore whether speaking style variation affects statistical 
learning under adverse listening conditions, specifically in noise. It is well-documented 
that clear speech enhances word recognition in noise (e.g., Ferguson & Kewley-Port, 2007; 
Gilbert, Chandrasekaran, & Smiljanic, 2014; Liu et al., 2004; Picheny et al., 1986; Smiljanić 
& Bradlow, 2005) and this benefit may become larger as the signal-to-noise ratio (SNR) 
decreases (Bradlow et al., 2003; Bradlow & Bent, 2002; Payton et al., 1994). Work by 
Fernandes and colleagues showed that the contribution of coarticulation to segmentation 
by statistical learning is largest in quiet and becomes smaller or even absent in noise. If 
noise masks the beneficial coarticulatory cues, and particularly if coarticulation is more 
pervasive in conversational speech, segmentation may be better for clear compared to 
conversational speech even if a different speaking style effect is found in quiet.

However, noise may increase cognitive load and affect speech segmentation beyond 
covering the beneficial acoustic-phonetic cues (Francis, Love, & Boutin, 2019; McCoy 
et al., 2005; Peelle, 2018; Pichora-Fuller et al., 2016; Rabbitt, 1968, 1991; Rönnberg 
et al., 2013; Rönnberg, Rudner, Foo, & Lunner, 2008; Schneider, Bernarding, Francis, 
Hornsby, & Strauss, 2019; Van Engen & Peelle, 2014; Winn, Edwards, & Litovsky, 
2015; Zekveld, Kramer, & Festen, 2010, 2011). Palmer and Mattys (2016) showed 
that the benefit of decreased speaking rate for segmentation by statistical learning was 
reduced in a dual-task paradigm, where listeners completed a concurrent task while 
performing speech segmentation. It made no difference whether the concurrent task 
involved phonological processing or non-linguistic visual processing. This led them to 
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conclude that the benefit of a slower speech rate is supported by domain-general central 
processing resources within working memory which are taxed more when performing a 
dual-task than a single task. Similar to the effect of a dual task, increased cognitive load 
and listening effort due to signal degradation by noise may result in fewer resources 
available for speech segmentation (e.g., Miles, Jones, & Madden, 1991; Pichora‐Fuller, 
Schneider, & Daneman, 1995; Rönnberg, Rudner, Lunner, & Zekveld, 2010; Zekveld, 
Kramer, & Festen, 2011). The increased processing load in noise would affect speech 
segmentation of both speaking styles equally though the adverse effect could be larger 
for clear speech as any benefit of its slower speaking rate would be reduced (cf. Palmer 
& Mattys, 2016). These findings suggest that the clear speech benefit for segmentation 
in quiet, if any, will be reduced or absent in noise. The second goal of the present study 
was thus to examine the role of speaking style adaptations in segmentation by statistical 
learning in noise and to gain a better understanding of the processes underlying 
successful segmentation.

We addressed the above questions using an artificial language learning experiment 
(e.g., Saffran, Newport, et al., 1996). Such an experiment uses nonsense speech material 
and therefore prevents listeners from relying on lexical knowledge to parse the speech 
signal. This was important for this investigation as we wanted to draw listeners’ attention 
to the signal-dependent acoustic-phonetic cues and the relatively signal-independent 
statistical properties and away from the lexical cues (Mattys & Bortfeld, 2017; Mattys, 
White, & Melhorn, 2005). Similar to previous artificial language learning studies, our 
experiment consisted of a learning phase and a subsequent test phase. During the learning 
phase, listeners heard long speech streams in which syllables co-occurred with varying 
probability giving rise to the artificial language ‘words.’ Next, they identified the words in 
a two-alternative (word versus partword) forced-choice test. Higher recognition accuracy 
in the test is assumed to reflect better segmentation performance during the learning. 
To examine the effect of speaking style, listeners heard either a clear or a conversational 
version of the artificial language. To examine the effect of the listening condition, the 
learning-phase speech streams were either presented in quiet or masked with noise at 
increasing levels of difficulty: +3 dB SPL SNR and 0 dB SPL SNR. 

2. The experiment
2.1 Participants
One hundred and eighty speakers of American English (97 female, 79 male, two non-
binary, and two who declined to identify gender) participated in the study, equally and 
randomly assigned to the six conditions (see below). They self-reported to have started 
learning English before the age of six and their mean age was 20.4 years (range: 18–46).1 
All participants signed written informed consent and filled out a detailed language 
background questionnaire adapted from the LEAP-Q questionnaire (Marian, Blumenfeld, & 
Kaushanskaya, 2007). The questionnaire indicated that 51 participants were functionally 
bilingual as they had also learned one or more languages other than English before the 
age of six and self-reported to be fluent in those languages. However, the data of the 
monolingual and bilingual participants were collapsed since there was no evidence that 

 1 Instead of using the term ‘native speaker/listener,’ we opted to define our participants as those who have 
acquired English before the age of six, including those who may have acquired another language at the 
same time. The term ‘native speaker’ is inconsistently conceptualized across studies, is often imbued with 
prescriptivist notions and linguistic privilege, and may be connected with discriminatory practices (cf. 
Cheng et al., 2021 and Grammon & Babel, 2021). For similar reasons, we use ‘language learners’ instead of 
‘non-native’ listeners.
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the two groups performed differently in the experiment.2 All participants passed a pure-
tone screening test bilaterally at 25 dB hearing level for 1000, 2000, and 4000 Hz, and 
received course credit or a small honorarium. Four participants who failed the hearing 
screening were excluded and four additional participants were recruited for a total of 30 
participants in each test condition.

2.2 Stimuli
Three vowels (/a, i, u/) and six consonants (/p, t, k, m, n, l/) were combined to form 
six trisyllabic CVCVCV sequences, which served as the ‘words’ of the artificial language: 
/pakila/, /timani/, /kutupi/, /mikamu/, /nuluta/, and /lipuna/. The three peripheral vowels  
were chosen to allow us to estimate the effect of speaking style on vowel space area. The 
consonants all occur in English. Another six ‘partwords’—/pinulu/, /tamika/, /kilati/, 
/mutima/, /nakutu/, and /lalipu/—were created as three-syllables substrings across ‘word’ 
boundaries (e.g., /kutupi/ + /nuluta/ = /pinulu/) and used as distractors in the test 
phase. A 21-year-old female speaker who acquired English from birth and who had some 
phonetic training recorded the stimuli in a sound-attenuating room. Each target word or 
partword was written in the International Phonetic Alphabet (e.g., /pakila/), embedded 
in a carrier sentence (i.e., The word I said was ____), and presented on a PowerPoint slide. 
The recording consisted of two parts. In the first part, the speaker was instructed to read 
the target-bearing carrier sentences aloud in a conversational speaking style, “as if she 
was talking to her friends or someone familiar with her voice.” Additionally, she was 
instructed not to reduce any vowels. In the second part, which followed after a 10-minute 
break, the speaker read the same sentences in the clear speaking style “as if she were 
talking to someone who cannot follow her conversationally or someone with hearing loss.” 
Similar instructions have been used in previous studies to elicit clear and conversational 
speaking styles (see Pichora-Fuller, Goy, & Van Lieshout, 2010 and Smiljanić & Bradlow, 
2009). The recordings were made with a MOTU UltraLite-MK3 Hybrid recorder and a 
Shure SM10A head-mounted microphone, digitized at a sampling rate of 44.1 kHz, and 
saved in WAV format.

The 24 stimuli—six words and six partwords for each style—were excised from the 
carrier sentences and manipulated with Praat (Boersma & Weenink, 2018). First, their 
F0 contours were flattened to the mean F0 for each style, calculated by averaging the 
F0 values across all the voiced intervals in the words and partwords. This rendered the 
learning-phase speech streams (described below) monotonous. The goal was to prevent 
listeners from using F0 contours for word segmentation (Endress & Hauser, 2010; Shukla 
et al., 2007) as F0 was not the focus of this study and to prevent ceiling performance on 
the artificial language learning task. The flattened F0 contour was at 232 Hz for the clear 
stimuli and at 210 Hz for the conversational ones, consistent with the finding that clear 
speech has higher overall F0 (Bradlow, Kraus, & Hayes, 2003; Hazan & Baker, 2011). The 
stimuli were equalized for the average RMS amplitude.

For each speaking style, the six resynthesized words were concatenated without 
pauses to form six long speech streams for the learning phase. Each stream contained 
20 repetitions of each word with the repetitions occurring pseudo-randomly such that 
the same word did not follow itself. Thus, listeners would be exposed to 120 repetitions 
of each artificial language word. The total duration of the six speech streams was about 

 2 To assess whether the monolingual and bilingual participants might perform differently, we fitted the 
Bayesian mixed-effects model described in Section 3 but also included Group (monolingual versus bilin-
gual) and all its interactions with Style and Listening Condition as fixed effects. We found that the 95% 
credible intervals of all the group-related fixed-effects included zero, providing no evidence that bilingual 
experience had an effect on this task.
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7.6 minutes for the clear speaking style and 5.9 minutes for the conversational speaking 
style. Successful segmentation during the learning phase depends on tracking statistical 
regularities, typically expressed as transitional probabilities between syllables. Using 
the formula of Saffran, Newport, and Aslin (1996), we found that the average between-
syllables transitional probability was one for all the words and ranged between 0.55 and 
0.60 (mean: 0.58) for the partwords in each speech stream.

Two noise-masked versions of the six speech streams were created for each speaking 
style by mixing them with a Gaussian noise shaped to match the long-term average 
spectrum of the words. In each style, two noise conditions were created with an increasing 
level of difficulty: +3 and 0 dB SPL SNR. These SNRs were selected based on previous 
literature examining clear speech intelligibility benefit (Smiljanić, 2021; Smiljanić & 
Bradlow, 2009) and pilot testing. All the speech streams were faded in and out with five-
second logarithmic ramps. There were six listening conditions total, resulting from a 2 × 
3 between-subjects design with style (clear and conversational) and listening condition 
(quiet, +3 dB SNR, and 0 dB SNR) as independent factors.

The test phase consisted of a two-alternative forced-choice test. In each trial, two 
stimuli—a word of the artificial language and a partword—were presented with a 
500-milisecond interstimulus interval. There were 36 trials, formed by all possible 
pairings of the six words with the six partwords. The orders of the two stimuli in a trial 
(i.e., partword first or partword second) were counterbalanced. All the test-phase stimuli 
were presented in quiet. The test lasted approximately eight minutes and contained 
the same speaking style as the learning phase to prevent responses based on acoustic 
matching. E-prime 2.0 (Psychology Software Tools, 2012) controlled response recording 
and stimulus presentation.

2.3 Procedure
Tested individually in a sound-attenuated room, participants first listened to the six 
speech streams of the artificial language, presented via Sennheiser HD570 headphones. 
They were not given any information about the artificial language and were instructed 
to listen to the recordings carefully and pay as much attention as they could. They 
were made aware of a subsequent test and those assigned to the +3 dB and 0 dB 
SNR conditions were additionally warned about the noise in the speech streams. Each 
participant only heard the six speech streams from one style and one listening condition 
(e.g., clear speech in quiet or conversational speech in +3 dB SNR). After the learning 
phase, participants immediately proceeded to the test consisting of words and partwords 
in the same speaking style. They were told that they would hear two stimuli in each 
trial and asked to press the button labeled “1” on a response box if they thought the 
first stimulus was a word of the artificial language and the button labeled “2” if they 
thought the second one was. They had five seconds to respond after the second stimulus 
was presented and the next trial would be automatically initiated after they made a 
response or timed out. Accuracy and reaction times (RTs) were calculated for each 
response. 

2.4 Acoustic analysis
Acoustic analyses were performed on the artificial language words to confirm that 
the speaker produced two distinct speaking styles. Segment boundaries were located 
by searching for acoustic landmarks such as nasal murmurs and stop closures in the 
spectrogram and waveform in Praat. When the onsets or offsets of these landmarks could 
not be pinpointed, as was often the case with the /la/ sequence, the mid-point in the 
formant transition was defined as the boundary between the segments.
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We focused on the acoustic measures typically found to distinguish clear and 
conversational speech: consonant and vowel duration, speech rate, and vowel space area 
(Smiljanić, 2021; Smiljanić & Bradlow, 2009). Speech rate was calculated as the total 
number of the syllables of the six words (i.e., 18) divided by their total duration in seconds. 
Vowel space area was calculated as the triangular area formed by the average mid-point 
F1 and F2 values of the three vowel categories. We also measured syllable duration to 
examine whether our speaker produced any syllables longer, allowing listeners to use word-
initial stress as a segmentation cue (Cutler & Butterfield, 1992; Cutler & Norris, 1988). 
We examined coarticulation, which listeners may use to facilitate word segmentation 
and which may differ across conversational and clear speech productions (e.g., Moon 
& Lindblom, 1994; Scarborough & Zellou, 2013). We quantified coarticulation using a 
technique introduced by Gerosa, Lee, Giuliani, and Narayanan (2006) and validated by 
Cychosz et al.  (2019). Unlike methods such as locus equation (e.g., Lindblom & Sussman, 
2012; Sussman, McCaffrey, & Matthews, 1991), which measures only F2 and can thus 
discard coarticulatory information in other resonant frequencies, this technique takes the 
whole spectrum of a segment into account and can be applied to any segment types. 
Following Cychosz et al. (2019), we divided each segment into frames of 25.6 milliseconds, 
applied short-time Fourier transformation to each frame to obtain its spectrum, and 
convolved a Mel-frequency filter bank over the spectrum. The results were then averaged 
across the frames of each segment to derive the average log Mel-frequency spectral vector, 
in which each value could be thought of as representing the segment’s intensity in a 
frequency band. Next, we calculated Euclidean distances between the spectral vectors of 
each diphone sequence in each word and obtained an overall spectral distance for that 
word by taking the average of the distances. Greater distances indicate more spectral 
difference between adjacent segments and hence less coarticulation. This analysis was 
done with a custom Python script using functions from the LibROSA library for audio 
processing (McFee et al., 2015).

Table 1 lists the mean syllable durations (ms), speech rate (syllables per second), and 
the vowel space areas for clear and conversational styles. As expected, overall speaking 
rate was slower for clear than for conversational speech. The clear syllables were on 
average longer than the conversational ones.3

Figure 1 shows the vowel space areas formed by /a, i, u/ in two speaking styles. The 
clear vowels (connected by dark gray solid lines) were generally more peripheral and their 
vowel space area was larger than that of the conversational vowels (367,632 Hz2 versus 
191,048 Hz2). Finally, coarticulation results showed that segments were less coarticulated 
in the clear speaking style: The overall spectral distances between adjacent segments 
in the clear artificial language words (mean: 7.25) were all greater than those of their 
conversational counterparts (mean: 5.71). The difference in mean overall spectral distance 
between the two styles (i.e., 1.54) was comparable to those found by Guo and Smiljanić’s 
(to appear) investigation of the LUCID corpus, which ranged between 0.59 and 2.64. In 
sum, the clearly produced artificial language words were acoustically distinct from the 
conversational ones, both temporally and spectrally and in the expected direction. Similar 
style differences were found for the partwords (see Appendix), which were used only in 

 3 Since the final syllables in the artificial language words were the longest, it is unlikely that our Eng-
lish listeners would perceive the word-initial syllables as stressed based on duration and apply the stress-
based segmentation strategy (Cutler & Butterfield, 1992; Cutler & Norris, 1988) to locate word beginnings. 
Instead, it is possible that they used the longer final syllables to locate word-final positions, as with the 
English listeners reported in previous research (Hay & Diehl, 2007; Tyler & Cutler, 2009; White, Benavides-
Varela, & Mády, 2020). Yet, as the third syllables were the longest in both clear and conversational speech, 
such use should improve segmentation regardless of speaking style.
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the test. The results of acoustic analyses show that our speaker was able to implement 
the clear speech modifications even for nonsense words (e.g., Ferguson & Quené, 2014; 
Moon & Lindblom, 1994; Picheny, Durlach, & Braida, 1986; Rosen et al., 2011; Smiljanić 
& Bradlow, 2005).

3. Results
Responses in the test phase were analyzed. Failures to respond within the allotted time 
(i.e., five seconds) were recorded as time-outs and discarded. As in some artificial language 
learning studies (e.g., Frank, Goldwater, Griffiths, & Tenenbaum, 2010; Palmer & Mattys, 
2016), participants whose accuracy rates were more than two standard deviations (SDs) 
below the mean of their condition were excluded as outliers. Four participants (2% of all 

Table 1: Mean syllable durations (in milliseconds) divided by syllabic position and averaged across 
the positions, speech rates (syllables per second), vowel space areas (VSA, Hz2), and mean 
spectral distances for the artificial language words produced clearly and conversationally, 
along with the clear-to-conversational ratio (CL/CO) of each measure.

Clear Conversational CL/CO

Duration 1st syllable 163 113 1.44

2nd syllable 198 138 1.44

3rd syllable 271 243 1.11

Average 211 165 1.28

Speech rate 4.75 6.07 0.78

VSA 367,632 191,048 1.92

Spectral distance 7.25 5.71 1.27

Figure 1: Vowel space areas formed by the mean mid-point F1 and F2 values (larger labels) of /a, i, 
u/ in the artificial language words for clear (dark gray) and conversational (light gray) speaking 
styles, along with F1 and F2 values of individual vowels (smaller labels).
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participants: two from clear in quiet, one from conversational in quiet, and one from clear 
with noise at 0 dB SNR) were excluded. Figure 2 shows the accuracy rates of individual 
participants and the boxplots for two speaking styles and all listening conditions.

A Bayesian mixed-effects logistic regression model was fitted to the responses using 
the brms package (Bürkner, 2017) of R (R Core Team, 2020). We opted to use the 
Bayesian approach as it offers several advantages over traditional frequentist methods 
based on null-hypothesis significance testing (Kruschke, Aguinis, & Joo, 2012; Lee, 2011; 
Wagenmakers et al., 2018). For example, it allows the incorporation of prior knowledge 
in model estimation. Its output is a probability distribution of plausible parameter values, 
which has a natural interpretation like “There is 95% probability that the true parameter 
value falls between x and y, given the model and data.” As data are usually collected 
with the goal of obtaining insight about parameters, this is conceptually more appealing 
than point estimates like the p-value in frequentist analysis, which is the probability of 
the data given that the null hypothesis is true (see, inter alia, Kruschke, 2014, for more 
details about Bayesian methods and Vasishth, Nicenboim, Beckman, Li, & Kong, 2018, for 
a tutorial using brms). The data and script for the statistical analysis are available on the 
Open Science Framework (https://osf.io/9v7k4/).

The fixed effects of primary interest in our model were Style (baseline: conversational), 
Listening Condition (LisCond; baseline: quiet), and their interaction. In addition, following 
Ou and Guo (2021), we log-transformed and scaled response time (LogRT) and included 
it as a covariate to factor out any potential relationship between response latency and 
accuracy. The random effects were random intercepts for participant, word, and partword 
as well as by-word random slopes for all fixed factors and a by-partword random slope for 
Style. Since there were no previous attempts to investigate the impact of speaking style 
on statistical segmentation, we used weakly informative, regularizing priors that have a 
normal distribution with zero mean and SD of 10 on all fixed-effect coefficients. The SD 
parameters for the random effects had the same normal distribution except they included 
only positive values. As a standard option, we used the LKJ(2) prior (Lewandowski, 
Kurowicka, & Joe, 2009) on the correlation parameters between the random intercepts 
and slopes (Vasishth et al., 2018). The joint posterior distribution was sampled using four 
Markov chain Monte Carlo (MCMC) chains, each with 2,000 iterations and a warm-up of 

Figure 2: Accuracy rates of individual participants with boxplots for two speaking styles and three 
listening conditions. The horizontal line in each box represents the median and the whiskers 
indicate the median ± 1.5 × interquartile range. The number beside each box represents the 
mean accuracy.
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1,000. The R-hat statistic (i.e., the ratio of between- to within-chain variance) was one for 
all parameters, indicating that the chains converged and could be representative of the 
underlying posterior distribution.

Figure 3 shows the marginal posteriors on all the fixed-effect parameters. A criterion 
for deciding whether a factor had a significant effect or whether two groups differ 
significantly in Bayesian inference is to examine the 95% credible interval (CI) of a 
posterior distribution—namely, the interval between the 2.5th and 97.5th percentiles of 
the distribution. Exclusion of zero from the interval is taken to be evidence for a significant 
effect or difference. For instance, the 95% CI was between –0.37 and –0.20 (mean: –0.29) 
for LogRT, meaning that given the model and data, there is a 95% probability that the 
parameter value of LogRT is between –0.37 and –0.20. The interval excluded zero and fell 
in the negative region, suggesting that there was an inverse relationship between response 
latency and accuracy: Responses with longer latencies were less likely to be correct. Such a 
relationship has been found in the artificial language learning experiments of Ou and Guo 
(2021). As they argue, this may reflect listeners’ response certainty or confidence. Recall 
that the two stimuli in each test trial were separated by a pause. Thus, listeners might be 
ready to respond as soon as they heard the first stimulus and could determine whether it 
was a word of the artificial language or a partword. But when they were indecisive, they 
might think longer and guess, resulting in slower and less accurate responses. 

It was also possible to draw inferences based on 95% CI for the other parameter values in 
the same way. Nevertheless, these raw parameter values were on a log-odds scale and the 
resulting inferences might not be immediately interpretable. Therefore, we chose to first 
compute the log-odds ratio for each condition at each iteration of the MCMC sample and 

Figure 3: Marginal posterior distributions of the fixed-effect parameters of the mixed-effects 
logistic regression model (in which the dependent variable was the binary response outcome 
[correct or incorrect] in the test phase, modeled as log odds), along with means (black dots) 
and 95% credible intervals.
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convert it to accuracy rate (in percentages) to obtain posterior distributions of accuracy 
for the six conditions. Next, we drew inferences about the effect of a particular factor by 
computing differences in posterior accuracy between the relevant conditions. Apparent 
from Figure 2 is that regardless of speaking style, performance dropped substantially 
when the artificial language speech streams were noise-masked. This was confirmed by the 
posterior distributions of accuracy drop from the quiet condition, calculated by subtracting 
the accuracy of the quiet condition from that of a noise condition. For conversational 
style, the posterior accuracy drop for +3 dB SNR had a mean of –16% and a 95% CI 
from –33% to –3%: That is, given the model and data, there was a 95% probability that 
mixing the conversational artificial language speech with speech-shaped noise at +3 dB 
SNR would decrease performance by 3% to 33% and chance that noise had no effect or 
enhanced performance was very low. Since the 95% CI excluded zero, it was assumed that 
for the conversational style, accuracy dropped significantly from the quiet to +3 dB SNR 
condition. Likewise, the posterior accuracy drop for the conversational style at 0 dB SNR 
had a 95% CI excluding zero (mean: –29%; 95% CI: [–45%, –12%]), suggesting that noise 
at 0 dB SNR significantly reduced performance. Similar significant reduction in accuracy 
in noise was shown for the clear style at +3 dB SNR (mean: –28%; 95% CI: [–52%, –9%]) 
and 0 dB SNR (mean: –31%; 95% CI: [–54%, –11%]).

To further explore how the adverse effect of noise interacted with style, we computed 
posterior difference between the two styles in accuracy drop from quiet to each noise 
condition. For +3 dB SNR, the 95% CI of the posterior difference (mean: –12%; 95% 
CI: [–29%, 2%]) did not exclude zero, but given the model and data, there was a high 
(i.e., 96%) probability that the performance decrease was larger for the clear style than 
for the conversational one. Yet, in the 0 dB SNR condition, there was no evidence that 
the accuracy drop from quiet differed across the two styles (mean –2%: 95% CI: [–18%, 
12%]): The probability that the drop was greater for clear speech was only 60%.

Our main objective was to examine whether clear speech improved segmentation by 
statistical learning relative to conversational speech and, if so, whether the clear speech 
segmentation benefit persisted in noise. These questions were addressed by calculating 
the posterior distribution of ‘clear speech benefit’—which was the difference in posterior 
accuracy between a clear condition and a conversational one—for each level of the listening 
condition factor. The results are shown in Figure 4. The posterior clear speech benefit in 
quiet had a 95% CI excluding zero and falling in the positive region (mean: 7%; 95% CI: 
[1%, 18%]). That is, compared to hearing the conversational style, hearing the clear style 
significantly increased the possibility of accurate word segmentation when the artificial 
language speech streams were presented in quiet (mean: 7%; 95% CI: [1%, 18%]). In 
addition, given the data and model, the probability that the clear speech benefit was zero 
or negative was less than 2%. These findings support the idea that clear speech improves 
segmentation by statistical learning relative to conversational speech.4 In contrast, the 
posterior distributions of clear speech benefit for the +3 dB SNR (mean: –5%; 95% CI: 
[–22%, 11%]) and 0 dB SNR (mean: 5%; 95% CI: [–13%, 22%]) were relatively flat and 
both their 95% CIs did not exclude zero, suggesting much uncertainty about the effect of 
speaking style. There is thus no evidence for a significant effect of style under either noise 

 4 A sensitivity analysis was conducted to examine how the evidence for the clear speech benefit in quiet 
would be impacted by the choice of priors. The model presented above was rerun using four different priors 
for all the fixed effects: normal distributions with a mean of zero and standard deviations of 0.1, 1, 25, and 
50. The resulting 95% CIs of posterior clear speech benefit in quiet for the four priors were [–4%, 5%], [0%, 
18%], [1%, 18%], and [1%, 17%], respectively. That is, the 95% CIs failed to exclude zero only when we 
used the priors with standard deviations of 0.1 and 1, which represented a rather strong belief that the fixed 
effects were likely around zero.
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condition. Finally, the posteriors of clear speech benefit of the two adverse conditions 
trended in opposite directions (see Figure 4) but the difference (mean: 10%; 95% CI: 
[–4%, 25%]) was not significant.

4. Discussion and conclusions
The current study investigated how speaking style variation impacted speech segmentation 
by statistical learning in quiet and in noise. A review of clear speech and speech 
segmentation research suggested that both conversational and clear speech could improve 
statistical segmentation, leading to competing predictions. The current work aimed 
to assess the contradictory predictions and to provide new evidence of the processes 
underlying successful segmentation. We used an artificial language learning experiment, 
in which English-speaking listeners recognized the words of a made-up language after 
hearing speech streams containing uninterrupted repetitions of the language’s words. 
Results indicated that regardless of speaking style, recognition accuracy of artificial 
language words in noise was worse than that in the quiet condition, showing that noise 
reduces segmentation performance. This was true for both the noise levels (+3 and 0 dB 
SPL SNRs). Crucially, when presented in quiet, the clear version of the speech streams 
led to higher accuracy than the conversational version, supporting the prediction that 
clear speech improves segmentation by statistical learning. However, in noise, recognition 
accuracy was equivalent for both speaking styles.

The finding from the quiet condition is consistent with the clear speech perceptual benefit 
well-documented in the literature. A shift from conversational to clear speaking style is 
associated with a number of acoustic-phonetic adjustments such as enhanced consonant 
and vowel contrasts and has been shown to assist listeners in phoneme identification and 
various linguistic and cognitive processes (e.g., Bradlow & Bent, 2002; Cooke et al., 2013; 

Figure 4: Posterior distributions of clear speech benefit in quiet, in noise at +3 dB SNR, and in 
noise at 0 dB SNR, with means (black dots) and 95% credible intervals.
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Keerstock & Smiljanić, 2019; Krause & Braida, 2002, 2004; Maniwa et al., 2009; Picheny 
et al., 1985). Our findings suggest that in an optimal listening situation, these adjustments 
are similarly beneficial for tracking statistical regularities in an unfamiliar language. Part 
of the clear speech benefit may be attributed to its slower speaking rate, which, as Palmer 
and Mattys (2016) argue, improves segmentation by statistical learning by allowing more 
time for syllable sequences to be stored in working memory and to be refreshed. On the 
other hand, conversational speech is relatively disadvantaged in terms of its support for 
statistical segmentation in quiet despite its more pervasive coarticulation cues. 

It is important to note that conversational speech still led to rather high accuracy. Our 
participants reached a mean accuracy rate of 85% in the quiet conversational condition 
and the Bayesian mixed-effects analysis revealed a mean posterior accuracy of 86% 
(95% CI: [69%, 96%]) for this condition. These percentages are well above chance and 
relatively higher compared to those reported in many artificial language learning studies 
(e.g., Ordin, Polyanskaya, Laka, & Nespor, 2017; Saffran, Newport, et al., 1996; Tyler & 
Cutler, 2009), which were mostly below 80%. Our participants’ mean accuracy is close 
to the mean accuracy of 82–85% observed by Fernandes et al. (2007) in the condition 
where the artificial language speech streams were presented in quiet with congruent 
coarticulatory and statistical cues. Therefore, conversational speech with its greater 
coarticulation supports successful segmentation, leading to an above 80% accuracy. 
However, clear speech provided an even greater benefit for segmentation accuracy. This 
suggests that, despite the less pervasive coarticulation, other acoustic-phonetic features 
associated with clear speech contributed significantly to segmentation. This result seems 
to be at odds with Fernandes et al.’s findings. However, since our speaker produced each 
artificial word as a whole, rather than as isolated syllables, word-internal segments were 
coarticulated to some extent even in clear speech. This is different from Fernandes et 
al.’s baseline condition in which syllables of artificial language words were concatenated 
without natural coarticulatory transition and against which the condition with congruent 
or incongruent coarticulation was compared. Further research is needed to precisely 
determine the relative strength of each acoustic-phonetic cue associated with speaking 
style variation as it contributes to segmentation.

In contrast to the quiet listening condition, the results showed equivalent segmentation 
performance for conversational and clear speech in noise at both SNR levels. The overall 
lower performance in noise is not surprising as a number of beneficial cues to segmentation 
are masked. In addition, noise increases listening effort, detracting cognitive resources 
from the segmentation task (e.g., Rönnberg et al., 2010; Zekveld et al., 2011). Unexpected 
though is the lack of the clear speech perceptual advantage in segmentation considering 
the oft-reported findings that clear speech significantly improves phoneme and word 
recognition relative to conversational speech in noise at these or similar SNRs, sometimes 
even to a greater extent as the SNR becomes more challenging (e.g., Bradlow et al., 2003; 
Ferguson & Kewley-Port, 2007; Payton et al., 1994; Picheny et al., 1986; Smiljanić & 
Bradlow, 2005).  It is possible that the increased cognitive load in noise depleted the 
processing resources in a way that the slower speaking rate in clear speech became less 
beneficial (cf. Palmer & Mattys, 2016), though this possibility remains speculative as the 
drop in accuracy from the quiet to noise conditions was not significantly greater for clear 
speech.

Another factor that could play a role in the observed lack of clear speech benefit relates 
to the relative weight of prosody as a segmentation cue in noise. Recall that our stimuli 
had monotone F0 contours, neutralizing pitch cues for the listeners. In addition to slower 
speaking rate and enhanced phonemic categories, clear speech is characterized by an 
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increase in pitch average and range (e.g., Bradlow et al., 2003; Picheny et al., 1986; 
Smiljanić & Bradlow, 2005). When speech is degraded by noise, beneficial segmental 
cues are masked and their role in segmentation may be diminished. In contrast, prosodic 
cues like stress become particularly robust and useful in the adverse listening conditions. 
English listeners are known to treat stressed syllables as word beginnings (stress-based 
segmentation: e.g., Cutler & Norris, 1988; Tyler & Cutler, 2009), reflecting the fact that 
most English words are stressed initially (Cutler & Carter, 1987). This segmentation 
strategy seems to play a role when the listening conditions are optimal. According to 
Mattys, White, and Melhorn’s (2005) model, descending weights are assigned to lexical, 
segmental (e.g., coarticulation), and prosodic/metrical cues in speech segmentation. 
The hierarchy is not fixed as listeners dynamically adjust cue weights in response to the 
listening condition. In noise-degraded speech, listeners rely on prosodic information, if 
well-preserved, more than on segmental information (Mattys & Bortfeld, 2017). Since our 
listeners could not rely on lexical knowledge in the artificial language learning tasks, it is 
possible that stress could have played an important role in the noise-masked conditions 
(cf., Fry, 1958; Gay, 1978; Lieberman, 1960; Sluijter & van Heuven, 1996). However, in 
our stimuli, vowels in the initial syllables were not longer and the words were synthesized 
with flattened F0, thus eliminating stress-based segmentation (see note 2). As F0 contours 
are more exaggerated in clear speech, F0 flattening may have affected segmentation in 
clear speech more than in conversational speech precisely in the listening conditions that 
would have favored prosodic cues. Future work should examine whether the presence of 
exaggerated stress cues would contribute to better segmentation performance for clear 
speech relative to conversational speech in noise. Another important future direction is to 
determine how noise impacts speech signal in combination with its effect on the domain-
general processing resources to determine speech segmentation.

The present study showed that speaking clearly relative to conversationally improves 
segmentation by statistical learning under optimal listening conditions. This finding suggests 
that as far as listening in quiet is concerned, a shift towards a hyper-articulated listener-
oriented speaking style improves not only recognition of meaningful words or sentences, 
but also processes that depend on domain-general cognitive abilities such as tracking 
statistical regularities. Listeners are able to use acoustic-phonetic enhancements to track 
syllable co-occurrences and improve segmentation by statistical learning. It is important 
though to acknowledge the limitations of the current study. The clear speech benefit for 
segmentation found here was rather small. It is therefore crucial to replicate these findings 
with a different group of listeners with the same language profile. Similarly, it cannot be taken 
for granted that the current results would generalize to more naturalistic communicative 
contexts or to other ‘clear speeches.’ Scarborough and colleagues (Scarborough et al., 
2007) found that speech to a real listener (e.g., a foreigner) was faster with less expanded 
vowel space than that to an imagined one. In a later study (Scarborough & Zellou, 2013), 
they showed that relative to read clear speech, real listener-directed speech had greater 
vowel-nasal coarticulation. As mentioned, however, Guo and Smiljanić’s (to appear) 
whole-spectrum analysis suggested that clear speech exhibited coarticulatory resistance 
when communicative barriers were explicitly imposed. Real listener-directed speaking 
styles also differ in F0 and vowel space or formant range depending on the interlocutor 
(Burnham et al., 2002; Uther et al., 2007) or the nature of the communicative barrier 
(e.g., vocoded versus mixed with talker babble) (Hazan & Baker, 2011). It is important 
then to see how the speaking style variation encountered in the real-world communicative 
situations contributes to speech segmentation. Our speculation is that the various acoustic-
phonetic enhancements consistently found across hyper-articulated clear speaking styles 
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(e.g., slower speaking rate) will improve segmentation by statistical learning relative to 
the casual hypoarticulated forms, though the effect size may vary across clear speaking 
styles elicited in different ways.

It is also of interest to examine whether the clear speech segmentation benefit observed 
at least in quiet extends to the listeners who are learning another language later in life. 
Clear speech enhancements reflect language-specific properties and gain in intelligibility is 
greater for the listeners who acquired the target language from birth than for the language 
learners (Bradlow & Alexander, 2007; Bradlow & Bent, 2002). Using signal-driven cues for 
segmentation is in part a language-specific skill that requires proficiency or knowledge in 
the target language (Tremblay & Broersma, 2019; Tremblay, Coughlin, Bahler, & Gaillard, 
2012). It is possible that language learners’ segmentation by statistical learning is enhanced 
through the language-independent clear speech enhancements such as slower speaking 
rate and exaggerated F0 contours. However, they may not be able to take advantage 
of other signal-driven cues such as vowel and consonant contrast enhancements, which 
might be available only to those with extensive experience with the sound patterns of the 
target language (Smiljanić & Bradlow, 2011). Finally, we need to extend this line of work 
to examine whether speech segmentation of real words is enhanced by clear speech in 
quiet and in noise differently than what was found for artificial language learning.
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