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This study investigates tonotactic accidental gaps (unattested syllable-tone combinations) in 
Mandarin Chinese. In a corpus study, we found that, independent of syllable type, T2 (rising) 
and T3 (falling-rising) gaps were over-represented, whereas T1 (high level) and T4 (falling) gaps 
were under-represented. We also observed fewer T1 gaps with voiceless onsets and more T2 and 
T3 gaps with voiceless onsets, a pattern that is consistent with cross-linguistic observations. 
While these trends were generally reflected in a wordlikeness rating experiment by Mandarin 
listeners, their judgements of these gaps, similar to those of real words, were also guided by 
neighborhood density. Furthermore, T2 gaps with real-word T3 counterparts were rated as more 
wordlike, a result attributed to the T3 sandhi in Mandarin Chinese. Finally, we used harmonic 
scores generated from the UCLA Phonotactic Learner to explicitly test the role of lexical 
knowledge and markedness constraints in modeling speakers’ tonotactic knowledge reflected 
in the wordlikeness ratings. We found that grammars induced from lexical data were the most 
successful at predicting wordlikeness ratings of gaps and lexical syllables combined. However, 
when focused on the ratings of tonotactic gaps, grammars with markedness constraints informed 
by cross-linguistic observations were more successful even without the constraints being 
weighted on lexical data. The results show how lexical knowledge and universal markedness, 
which is not entirely learnable from the lexicon, may account for some tonotactic generalizations.
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1. Introduction
One of the central goals of phonology is to describe what structures are and are not possible 
in a given language (Fischer-Jørgensen, 1952; Halle, 1962). However, relatively less research 
has considered what seems to be possible yet does not exist. These unattested “accidental gaps” 
have traditionally been dismissed, considered possible and thus left unexplained, as opposed 
to systematic gaps, which violate systematic phonotactic constraints and thus are deemed 
impossible. Previous studies have shown that speakers’ acceptance of these possible yet unattested 
forms is generally gradient and based on grammatical principles, such as markedness (e.g., Frisch, 
Pierrehumbert, & Broe, 2004; Zuraw, 2000, 2002), or lexical statistics, such as neighborhood 
density and the probability or frequency of attested forms (e.g., Albright & Hayes, 2003; Coleman 
& Pierrehumbert, 1997; Frisch et al., 2004; Gong & Zhang, 2021; Myers & Tsay, 2004). These 
studies, however, mainly focus on unattested segmental combinations. This study, on the other 
hand, explores unattested forms involving syllable-tone combinations, or “tonotactic accidental 
gaps” (Gong & Zhang, 2021; Lai, 2003; Wang, 1998), in Mandarin Chinese.1 Since the processing 
of tone is distinct from that of segmental information (e.g., Cutler & Chen, 1997; Lee, 2007; Wiener 
& Turnbull, 2016), we investigate if the aforementioned generalizations (i.e., cross-linguistic 
grammatical principles and lexical statistics) drawn from unattested segmental combinations 
can also be applied to tonotactic accidental gaps. Using a corpus study and a wordlikeness rating 
experiment, we investigate whether the patterns observed in the corpus for gaps are reflected in 
Mandarin speakers’ judgments of wordlikeness. Furthermore, given the finding that the phonetic 
naturalness of onset-tone interactions and lexical statistics both predicted speakers’ judgments, 
we used computational modeling analysis to investigate their relationship further. Specifically, 
we asked whether and to what extent relevant knowledge of tone and onset-tone markedness is 
learnable from the lexicon using constraint-based learning simulation.

Standard Mandarin is generally described as having five vowels (/i, y, u, ə, a/) and 25 consonants 
with the maximum syllable structure (C)(G)V(G)/(C) (Lin, 2007). It has four phonemic tones: High-
level Tone 1 (55), rising Tone 2 (35), falling-rising Tone 3 (214), and falling Tone 4 (51) (Duanmu, 
2007; Lin, 2007). Tone numbers here indicate relative pitch height—the higher the number, the 
higher the relative pitch. Though less mainstream, some phonologists do not consider Mandarin 
to be a four-toneme language, treating the neutral tone as lexically specified (Chen & Xu, 2006; K. 
Huang, 2012). Not all tones, however, can be combined with every possible syllable. For example, 
the syllable [tsʰu] can be combined with T1 ([tsʰu]55 “coarse”), T2 ([tsʰu]35 “die” in Classical or 
Literary Chinese), and T4 ([tsʰu]51 “vinegar”), but not with T3. The syllable-tone combination 
*[tsʰu]214 does not violate any obvious phonotactic constraints in Mandarin, yet it fails to exist 

 1 By using “tone-syllable” combination, we did not make any claims on the status of “tone” being separable from the 
rest of the syllable.
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in any dictionary—this is an example of a tonotactic accidental gap (Duanmu, 2011; Lai, 2003). 
Because their occurrence seems random, tonotactic accidental gaps have been all but ignored in the 
literature. Note that, unlike segmental gaps in the aforementioned studies in which the number of 
possible unattested forms are hard to define, the number of tonotactic gaps can be easily calculated 
since the allowable syllables in Mandarin Chinese is straightforward. Thus, the tonotactic gaps 
reported in this study can also be understood as the inverse of actual Mandarin Chinese syllables (e.g., 
more T2 gaps means fewer actual T2 syllables). This study focuses on tonotactic accidental gaps to 
reveal relevant grammatical properties of the linguistic system. Motivated by studies demonstrating 
the importance of a priori grammar states and analytic biases independent of lexical statistics (e.g., 
Berent, Wilson, Marcus, Bemis, 2012; Becker, Nevins, & Levine, 2012) in modeling native speakers’ 
phonotactic knowledge, we aimed to investigate whether speakers’ differential preferences for 
unattested forms require knowledge that is either supplied by some a priori state (markedness 
informed by cross-linguistic observations) or from the attested lexicon (lexical statistics).

Among a handful of studies that have examined this issue, Wang (1998) asked native Taiwan 
Mandarin speakers to rate the wordlikeness of target syllables on a scale from 0 to 10, 0 indicating 
that the target syllable was very close to a real Mandarin word and 10 indicating that the target 
syllable was completely unlike a real word. The target syllables included tonotactic accidental 
gaps, phonotactic accidental gaps (phonotactically legal syllables that fail to exist), systematic 
gaps (phonotactically illegal syllables), and existing words. The results showed a clear distinction 
between existing and non-existing words, suggesting that tonotactic accidental gaps generally 
pattern together with phonotactically illegal syllables. However, Wang also noted that, among 
the non-existing words, accidental gaps (both tonotactic and phonotactic) were more readily 
accepted by native speakers compared to systematic gaps.

On the other hand, Myers and Tsay (2004) showed that native Taiwan Mandarin speakers’ 
judgments of tonotactic accidental gaps in a wordlikeness rating experiment differed from those 
of phonotactically legal syllables and were judged similarly to systematic gaps. They concluded 
that phonotactics affects the judgement of both real words and non-words while frequency 
and neighborhood density only affect words. In an investigation of gap distribution and native 
speakers’ judgements, however, Lai (2003) showed that there was an effect of tone frequency on 
non-words. In this study, tonotactic gaps with T2 were shown to be more common than those with 
the other tones. Moreover, T2 combined with closed syllables and [p, t, k, tɕ, tʂ, ts] onsets and T1 
with [m, n, l, ʐ] onsets accounted for a large proportion of gaps. Lai further conducted rating and 
preference experiments investigating native Taiwan Mandarin speakers’ judgments of tonotactic 
accidental gaps and found that T4 gaps were more readily accepted as real Mandarin words 
compared with T2 gaps, and T2 gaps with [p, t, k, tɕ, tʂ, ts] onsets were generally disfavored. 
These results were attributed to tone frequency: There are more real words with T4 than T2, and 
there are more T2 gaps with those particular onsets.
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In a more recent study, Gong and Zhang (2021) collected native Mandarin speakers’ well-
formedness judgments of five types of T1 syllables—real words, tonotactic gaps, allophonic gaps 
(gaps that only violate allophonic rules; e.g., vowel backness depending on the place of the nasal 
codas), phonotactic accidental gaps, and systematic gaps. They found that the five different 
types of stimuli were rated gradiently: Real words were considered more well-formed than 
tonotactic gaps, followed by allophonic gaps, phonotactic accidental gaps and finally systematic 
gaps. Furthermore, the judgments were positively correlated with neighborhood density, and 
this effect was found to be stronger for gaps than for real words.

The results from such behavioral experiments with gradient measurements of phonotactic 
probability or well-formedness can be computationally modeled. The UCLA Phonotactic Learner 
(Hayes & Wilson, 2008), which induces grammars consisting of weighted constraints based on the 
principle of Maximum entropy (Della Pietra, Della Pietra, & Lafferty, 1997; Goldwater & Johnson, 
2003; Hayes & Wilson, 2008; Zuraw & Hayes, 2017), has been extensively used for this purpose 
(e.g., Berent et al., 2012; Daland, Hayes, White, Garellek, Davis, & Norrmann, 2011; Gallagher, 
Gouskova, & Camacho Rios, 2019; Goldwater & Johnson, 2003; Hayes & White, 2003; Wilson & 
Gallagher, 2018). Gong (2017), for example, used this method to model visual lexical decisions 
on segmental combinations in Mandarin Chinese. Gong and Zhang (2021) also used the learner 
to model the wordlikeness ratings of Mandarin word forms from different lexicality categories. 
Alternatives to the UCLA Phonotactic Learner in modeling lexical judgements in Mandarin 
include the probability of segmental strings (Myers & Tsay, 2005) and Bayesian probabilities (Do 
& Lai, 2020). In this study, we complement these works by modeling tonotactic generalizations 
with the UCLA Phonotactic Learner to compare grammars with different tonotactic constraints, 
namely inductive constraints with different levels of fit to the lexicon and typologically-motivated 
markedness constraints with or without access to the lexicon (i.e., if the weights are informed by 
learning simulations using the lexicon). These comparisons allow us to examine to what extent 
the effects observed in the behavioral data are learnable from the lexical data.

In the following sections, we give a comprehensive description of Mandarin tonotactic 
accidental gaps. First, we conduct a corpus study to examine the distribution of all lexical segmental 
syllables, that, when combined with the four lexical tones, yield non-lexical syllables. The results 
show that, independent of syllable type, T2 (rising) gaps are over-represented. Since T2 and T3 
are intrinsically more marked than T1 and T4 in terms of contour complexity and aerodynamics 
(see Section 2), and the phonetic realization of T2 and T3 contours requires a longer duration 
(Zhang, 2001), we further investigate to what extent would the T2 overrepresentation and T2/T3 
markedness reflect on speakers’ wordlikeness rating. The results reveal that T2 is not disfavored 
while T3 is generally disfavored independent of syllable structures. Furthermore, native speakers’ 
wordlikeness ratings of gaps are gradient and heavily guided by neighborhood density. While 
speakers’ wordlikeness judgment does reflect the markedness of T3 with a falling-rising contour, 
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the over-representation of T2 gaps from the lexicon is not similarly evident. Motivated by the 
mismatches between the statistical properties of the lexicon and speakers’ judgments, we use the 
UCLA Phonotactic Learner as a computational tool to incorporate and compare different degrees 
of lexical access in modeling wordlikeness ratings. We find that while tonotactic constraints 
induced from the lexical data can successfully model the results overall, typologically-motivated 
markedness constraints are better at predicting which gaps receive higher ratings, and their 
success could largely be achieved independent of the lexicon. The modeling results suggest that 
speakers’ tonotactic knowledge may be disassociated from statistical patterns in the lexicon.

2. Corpus study of Mandarin tonotactic accidental gaps
To examine if the possible yet unattested Mandarin tonotactic accidental gaps follow any 
particular pattern, we first investigate the distribution of these gaps by compiling a corpus of 
gaps, which we named the ‘Mandarin Accidental Gap Corpus’. The corpus included the 398 
allowable Mandarin syllables (taken from Lin, 2007, p. 283). Two definitions of accidental gaps 
were employed: (1) A narrow view, in which syllable-tone combinations do not exist as a lexical 
syllable in the Revised Mandarin Chinese Dictionary, compiled by the Ministry of Education, Taiwan 
(https://dict.revised.moe.edu.tw/), and (2) a broad view, where syllable-tone combinations do 
form lexical syllables but have zero-frequency in the Taiwan Mandarin Conversational Corpus 
(TMC corpus) (Tseng, 2019).2 For example, the syllable [tsʰu] in T2 ([tsʰu]35 “die” in Classical 
or Literary Chinese), historically exists as a lexical syllable and is known by Mandarin speakers 
through poetry but is not listed. As such, this lexical syllable might be considered a gap by native 
Mandarin speakers because it is rarely, if ever, used in spoken Mandarin. This lexical syllable was 
thus counted as a gap in the broad view but not in the narrow view. Note that we use “lexical 
syllable” here and throughout this work instead of “word” because while Mandarin morphemes 
are mostly monosyllabic, around 72% of the lexicon is made up of disyllabic words (Li, 2013).

Our investigation of the corpus data revealed that accidental gaps were not evenly distributed 
across the four tones, as shown in Figure 1. In the narrow view, a one-way chi-square test 
showed that T2 gaps were over-represented while T4 gaps were under-represented (χ2(3) = 
68.8, p < .001). Another one-way chi-square test revealed that T2 gaps were over-represented 
in the broad view (χ2(3) = 25.01, p < .001). In the aforementioned study, Lai (2003) made a 
similar observation that T2 gaps outnumbered gaps with the other tones.

There are several possible explanations for the asymmetrical distribution of accidental gaps. 
First, it could be attributed to Zhuó Shǎng Biàn Qù (voiced shǎng tone entering qù tone), a historical 
tone merging process in which a number of voiced shǎng tones (i.e., T3) merged into qù tones 

 2 We referred to a Taiwan-based conversational corpus in this study because Taiwan Mandarin participants were 
recruited for our wordlikeness rating experiment. We did not assume a substantial difference in the generalizations 
drawn here and those drawn from Putunghua.

https://dict.revised.moe.edu.tw/
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(i.e.,  T4) in Middle Chinese (Mei, 1970, 1977; Wang, 1972). This may account for the lower 
number of T4 gaps. Second, the large percentage of T2 gaps could be attributed to the markedness 
of rising (i.e., T2) in comparison with level and falling tones (i.e., T1 and T4). Specifically, among 
simple contour tones, falls are much more common than rises, presumably due to the physiological 
difficulty associated with the production of rising contours against natural airflow dynamics 
(Zhang, 2001). Despite the fact that T3 (falling-rising) involves the most complex contour, we 
did not observe any obvious overrepresentation of T3 gaps except for the greater number of T3 
gaps observed in the broad view compared with those in the narrow view. This may be attributed 
to the marked status of the complex tonal contour or to its greatly confusable nature with T2 
due to phonetic similarity and a morphophonemic alternation involving T3 sandhi (Hao, 2012; 
T. Huang, 2001; Huang & Johnson, 2010; Hume & Johnson, 2003; Mei, 1977). This speculation is 
not without grounding as T3 sandhi has indeed emerged within the past few centuries (Mei, 1977).

It should be noted that, cross-linguistically, contour tones are generally preferred in longer 
rimes, presumably because they provide a duration long enough to realize the complex tone targets 
(Zhang, 2000, 2001). Studies have shown that Mandarin CGVN syllables are indeed longer than 
other syllable types (i.e., CV, CVN, CGV) (Wu & Kenstowicz, 2015) and that T2 and T3 are longer 
than T1 and T4 (Lu & Lee-Kim, 2021; Wu & Kenstowicz, 2015). We thus divided the syllables into 
different types (CV/CGV, CVG/CGVG, CVN/CGVN) to examine if there were any tone-syllable 
type dependencies. Here we follow a conventional definition of syllable structure in Mandarin, 
assuming that on-glides are grouped with the onset and thus do not contribute to syllable weight 
(Duanmu, 2007). However, as the results in Figure 2 show, we did not observe any tendencies in 
this direction (narrow view: χ2(6) = 8.05, p = .24; broad view: χ2(6) = 4.11, p = .66).

Figure 1: Numbers of Mandarin accidental gaps as a function of tone in the narrow and broad 
views. The horizontal lines indicate the predicted numbers.
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Cross-linguistic and diachronic studies have observed that high-f0 tones are more compatible 
with voiceless onsets while low-f0 tones are more compatible with voiced onsets (e.g., Hsieh & 
Kenstowicz, 2008; Kenstowicz & Suchato, 2006; Ohala, 1978; Sagart, 1999; Yip, 2002). This can 
be explained by the aerodynamics involved in articulation in that voiceless consonants exert a 
pitch-raising effect on the following tone (Hombert, Ohala, & Ewan, 1979; Ohala, 1978). It is 
generally agreed upon that some Chinese tones originated via a similar mechanism. Sagart (1999) 
reports a clear correspondence between onset voicing in Middle Chinese and tones in Modern 
Chinese—voiced onsets, both obstruents and sonorants, induced a tone lowering of the following 
vowel resulting in high and low allotones that eventually phonologized into different tonal 
contrasts. We thus examined if T1 and T4, tones with an initially high pitch, were more likely to 
appear with voiceless onsets (i.e., having fewer gaps), and if T2 and T3, tones with initially low 
pitch, were more likely to appear with voiced onsets. In other words, there should be fewer T1 
and T4 gaps coupled with voiceless onsets and T2 and T3 gaps with voiced onsets. The contrast 
between voiced and voiceless consonants is essentially obstruent vs. sonorant since Mandarin 
obstruents lack a voicing contrast.3 The results (Figure 3) showed that the distribution of gaps 
mostly conformed to this trend: More gaps with voiced onsets were observed in T1 than in T2 
and T3, in which gaps with voiceless onsets dominated (narrow view: χ2(3) = 80.37, p < .001; 
broad view: χ2(3) = 64.52, p < .001). However, T4 gaps did not pattern as predicted. Although 
the pitch of T4 is initially high, there were still more T4 gaps with voiceless onsets. This may be 
attributed to the historical tone merging process mentioned earlier whereby T3, presumably with 
more voiced onsets, merged into T4, disrupting the connection between onset voicing and tone.

 3 Note that the Mandarin rhotic is variably treated as a voiced obstruent [ʐ] or an approximant [ɹ] (Duanmu, 2007; 
Lin, 2007).

Figure 2: Proportions of Mandarin tonotactic accidental gaps as a function of syllable types in 
the narrow and broad views. The horizontal lines indicate the predicted proportions.
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Recall that Lai (2003) reported that T2 closed syllables with [p, t, k, tɕ, tʂ, ts] onsets and T1 with 
[m, n, l, ʐ] onsets accounted for a large proportion of gaps. When we focused our analysis on 
individual onsets, we found that onset voicing, again, is a better indicator of the general pattern, 
as shown in Figure 3.

The analyses of our corpus data were aimed at determining if the accidental gaps in 
Mandarin follow any particular pattern. Our findings suggest that the occurrence of gaps is not 
completely random. We found that T2 gaps are over-represented while the most marked T3 
gaps are not. We also found more gaps with voiced onsets in T1 than in all other tones, in which 
gaps with voiceless onsets dominated, a pattern that is partially observed cross-linguistically  
and diachronically.

In the next section, we investigate Mandarin speakers’ judgments of these accidental gaps. 
Specifically, we conducted a wordlikeness judgement experiment to explore whether their 
judgements of accidental gaps would follow the same tendencies that we observed in our corpus 
study and/or by grammatical principles that were absent from the corpus.

3. Wordlikeness judgment experiment
We conducted a wordlikeness judgement experiment to investigate Mandarin listeners’ perception 
of tonotactic accidental gaps and to determine if their perceptual tendencies reflect what has 
been observed both cross-linguistically and in our corpus study. The factors being examined 
along with our predictions are summarized in Table 1.

Figure 3: Proportions of Mandarin tonotactic accidental gaps as a function of onset voicing in the 
narrow and broad views. The horizontal lines indicate the predicted proportions.
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3.1. Methodology
3.1.1. Participants
Thirty-seven Taiwan Mandarin native speakers (10 male, 27 female; aged 20–37, M = 21.68) 
were recruited from National Yang Ming Chiao Tung University. These participants were all 
Mandarin-dominant speakers with some exposure to other dialects of Chinese spoken in Taiwan 
(Taiwanese Southern Min and Hakka). None of the participants reported hearing or speaking 
deficiencies. The study was conducted in accordance with the ethical guidelines approved by 
the Research Ethics Committee for Human Subject Protection, National Yang Ming Chiao Tung 
University. All participants were compensated monetarily for their time.

3.1.2. Materials
To examine whether the patterns observed in the corpus and cross-linguistically (Table 1) are 
reflected in native Mandarin speakers’ judgments of accidental gaps, 96 Mandarin accidental gaps 
(as defined by both the narrow and broad views) were selected. The gaps were counterbalanced 
across the four Mandarin tones and different syllable types (open: CV, CGV; closed: CVN, CGVN). 
Another 48 Mandarin lexical syllables, referred to as “words” in the figures for the sake of 
brevity, fulfilling the same criteria were also selected. These stimuli were selected such that 
they represented the distribution in the corpus in terms of onset voicing and tone combinations 

Observation Possible explanations

a. More T2 gaps than T1/T4 gaps observed 
in the corpus

T2/T3 are more marked than T1/T4.

 Are T2 gaps judged as less wordlike? 
 Is the most marked T3 judged as less wordlike?

b.  T2/T3: More gaps with voiceless onset 
T1: Fewer gaps with voiceless onset

Note: T4 does not conform to this pattern 
due to a historical tone merging process.

High-f0 is more compatible with voiceless 
segments while low-f0 is more compatible 
with voiced segments.

 Are T2/T3 gaps with voiceless onset and T1 gaps with voiced onset judged as less wordlike?

c. Lexical statistics: Neighborhood density, 
frequency, and phonotactic probability

Previous studies have found effects of frequency, 
neighborhood density and phonotactic probab-
ility effects on unattested forms (Albright, 2003; 
Coleman & Pierrehumbert, 1997; Frisch, Large, 
& Pisoni, 2000; Gong & Zhang, 2021; Lai, 2003; 
Myers & Tsay, 2005).

 Do lexical statistics have a gradient effect on the wordlikeness judgment of gaps?

Table 1: Factors that may affect the wordlikeness judgments of Mandarin tonotactic accidental gaps.
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(e.g., more voiced-onset T1 gaps, more voiceless-onset T2 gaps).4 The 144 stimuli (see Appendix 
I) were produced by a male native speaker of Taiwan Mandarin. Though previous studies have 
shown that including real words can de-sensitize participants’ ratings of non-words and is more 
likely to activate lexical neighbors than when all stimuli are non-words (Albright, 2009), we 
included lexical syllables to enable a comparison between the gaps and lexical syllables.

The realization of the phonetic tonal contours of these naturally produced stimuli were 
checked to ensure that the gap and lexical tokens were comparable. Time normalized f0 contours 
of these tokens (excluding obstruent onsets, if any) were obtained using ProsodyPro (Xu, 2013). 
As seen in Figure 4, the tonal contours were comparable between the gap and lexical tokens. 
Note that the final rise of T3 (falling-rising) contours fell short of the final rise target, a well-
known characteristic of T3 production in Taiwan Mandarin (Fon & Chiang, 1999; Kubler, 1985). 
Despite the final-rise undershoot of T3, Lu and Lee-Kim (2021) showed that this tone is still 
perceived as having a complex fall-rise contour. All else being equal, Taiwan Mandarin speakers 
perceived T3 tokens without final rise as the longest among the four lexical tones. Furthermore, 
when asked to imitate T3 with a final-rise undershoot, these speakers implemented a final rise, 
similar to that in T3 with a full concave contour.

The durations of gap syllables were longer (M = 470.33 ms, SD = 111.15 ms) than those of lexical 
syllables (M = 441.47 ms, SD = 106.89 ms). Since this difference in the naturally produced 
stimuli could have confounded the wordlikeness ratings, the stimuli were further resynthesized 

 4 The distribution of onset voicing according to tone is listed here: T1 voiced = 13, voiceless = 11; T2 voiced = 6, 
voiceless = 18; T3 voiced = 6, voiceless = 18; T4 voiced = 6, voiceless = 18.

Figure 4: Time normalized f0 as a function of tone paneled by lexicality.
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into two durations, 300 ms and 500 ms, reflecting the range of Mandarin syllable duration (Lu & 
Lee-Kim, 2021; Wu & Kenstowicz, 2015), using the Pitch Synchronous Overlap and Add (PSOLA) 
algorithm in Praat (Boersma & Weenink, 2017). The manipulation ensured that any differences 
in the gap and word ratings would be unlikely to be due to any acoustic artifacts of the stimuli.

3.1.3. Procedure
The 288 stimuli ([96 accidental gaps + 48 lexical syllables] × 2 durations) were randomized 
for each participant and presented auditorily in three blocks using E-Prime software (Schneider, 
Eschman, & Zuccolotto, 2012). The participants were instructed with written instructions on a 
computer screen (Qǐngwèn nín tīngdào de zì yǒu duō xiàng zhōngwén? “How Mandarin-like is the 
word you just heard?”) to rate each word on a 7-point scale, with 7 being the most wordlike and 
1 the least wordlike.5 Nine practice trials were presented before the experiment to familiarize 
participants with the task. Participants were tested individually in a sound-attenuated booth 
using AKG K240 headphones and their responses were recorded using E-Prime. The total duration 
of the experiment was around 15 minutes.

3.2. Results
Linear mixed-effects regression models were fitted in R using the lme4 package (Bates, Maechler, 
Bolker, & Walker, 2015) and p-values were obtained using the lmerTest package (Kuznetsova et al., 
2016). The visualizations were plotted using the ggplot2 package (Wickham, 2009). Models were 
fitted with the participants’ wordlikeness ratings on the 7-point scale converted into z-scores for each 
speaker as the dependent variable. For our analyses, the experimental variables of interest included 
Tone (4 levels), SyllableType (open vs. closed), OnsetVoicing (voiced vs. voiceless), and Lexicality 
(tonotactic gap vs. lexical syllables). A set of variables on lexical statistics was also included. For 
a balanced comparison of the tonotactic gaps and lexical syllables, we used SyllableFrequency and 
SyllableGapFrequency as the indices to calculate the effect of frequency, if any.

The calculation of SyllableFrequency was straightforward; we calculated the overall token 
frequency of each syllable regardless of tone and morphemes using the TMC corpus (Tseng, 
2019). We grouped homophonic morphemes together and only considered syllable token 
frequency since an auditory experiment had been employed. SyllableGapFrequency is the inverse 
of tonal neighborhood density, calculated by the number of lexical syllables differing from the 
test item only in tone. That is, with only one gap in a certain syllable, “1” would be considered 
more frequent while “3”, with three gaps, would be considered less frequent. Note that there is 
no “4” because in this case all tone-syllable combinations would be impossible.

 5 One might question the possibility that the reading of “zhōngwén”, literally meaning “Chinese”, could refer to a 
Chinese dialect other than Mandarin. This reading is unlikely due to the fact that these participants were Mandar-
in-dominant and that in Taiwan, Taiwanese Southern Min is referred to as “tái yǔ” and Hakka as “kè yǔ”. The term 
“zhōngwén” almost exclusively refers to Mandarin in Taiwan.
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NeighborhoodDensity and PhonotacticProbability were included to provide additional 
quantification of possible lexical influence. NeighborhoodDensity was calculated by the summed 
frequency of the words generated by adding, deleting, or substituting a single phoneme. In this 
calculation, we treated diphthong vowels as sequences of two phonemes (e.g., [a], [i], and [ei] 
as neighbors of [ai]). Note that we used a tone-blind NeighborhoodDensity since the previously 
mentioned SyllableGapFrequency variable already reflected the number of syllables differing 
in tones. Finally, PhonotacticProbability was defined by onset-rime transitional probability 
(Tseng, 2019).

In addition to the lexical statistics variables (SyllableFrequency, NeighborhoodDensity, 
SyllableGapFrequency and PhonotacticProbability), the model also included the Tone*OnsetVoicing 
interaction to examine if there was any correlation between Tone and the two factors (Table 1(a, b)) 
as well as the Tone*Lexicality interaction to determine if gaps, like lexical syllables, were rated based 
on lexical statistics (Table 1(c)). The model also included the random intercepts for Participant 
and Item as well as by-participant random slopes for Tone, OnsetVoicing, and NeighborhoodDensity. 
Models including other by-participant random slopes failed to converge.

Descriptions of each variable and how they were coded are listed in Table 2. T2, which yielded 
intermediate wordlikeness ratings, was set as the reference level to facilitate the interpretation 
of the results. The binary variables SyllableType, OnsetType, and Lexicality were contrast coded so 
the sum of the weight of each level would be 0 so we could interpret the results as main effects 
(Davis, 2010).

Variable Description Coding

WordlikenessRating 1–7 rating scale transformed into z-score Numerical

Tone T1, T2, T3, T4 4 levels: T2 as reference

SyllableType Open vs. closed 2 levels: –1 vs. 1

OnsetVoicing Voiceless vs. voiced 2 levels: –1 vs. 1

Lexicality Gap vs. lexical syllable 2 levels: –1 vs. 1

SyllableFrequency Z-scored log transformed token frequency 
of each syllable regardless of tone

Numerical

SyllableGapFrequency The inverse of tonal neighborhood density Numerical

NeighborhoodDensity Z-scored summed frequency of the words 
generated by adding, deleting, or substi-
tuting of a single phoneme

Numerical

PhonotacticProbability Z-scored onset-rime transitional probability Numerical

Participant Participant ID Factorial

Item Test item Factorial

Table 2: Variables considered for analysis in wordlikeness rating experiment.
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The statistical model is summarized in Table 3. As would be expected, Mandarin speakers 
generally rated lexical syllables as more wordlike than gaps (Lexicality: p < .0001). In the 
following, we discuss each of the factors and interactions that were relevant to patterns reported 
in the corpus study and previous cross-linguistic observations.

3.2.1. Corpus observation: More T2 and T3 gaps than T1 and T4 gaps
One of the main observations from our corpus study was that there were more T2 gaps than gaps 
of other tones (see Figure 1). One goal of this experiment was to determine if this pattern would 

R2 = .55

B SE t p

(Intercept) 0.29 0.11 2.75 .007

T1 0.08 0.08 1.02 .311

T3 –0.22 0.08 –2.74 .007

T4 0.06 0.08 0.77 .445

OnsetVoicing –0.03 0.06 –0.57 .567

Lexicality 0.44 0.09 4.69 <.0001

SyllableFrequency 0.06 0.05 1.34 .184

SyllableGapFrequency –0.03 0.04 –0.81 .418

SyllableType 0.02 0.02 0.90 .371

NeighborhoodDensity 0.11 0.05 2.24 .027

PhonProbability 0.02 0.07 0.25 .802

T1:OnsetVoicing 0.18 0.08 2.27 .025

T3:OnsetVoicing 0.03 0.08 0.45 .657

T4:OnsetVoicing 0.04 0.07 0.59 .558

T1:Lexicality –0.10 0.07 –1.37 .174

T3:Lexicality –0.04 0.07 –0.53 .594

T4:Lexicality –0.07 0.07 –1.03 .306

Lexicality:SyllableFrequency 0.00 0.05 –0.04 .967

Lexicality:SyllableGapFrequency 0.10 0.04 2.67 .008

Lexicality:NeighborhoodDensity 0.05 0.05 1.10 .273

Table 3: Summary of the statistical model for the wordlikeness judgment experiment.
Model: Wordlikeness rating ~ Tone * OnsetVoicing + Tone * Lexicality + Lexicality 
* SyllableFrequency + Lexicality * SyllableGapFrequency + Lexicality * NeighborhoodDensity 
+ PhonotacticProbability + SyllableType + (1 + Tone + OnsetVoicing + NeighborhoodDensity 
| Participant) + (1 | Item).
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also be observed in Mandarin native speakers’ wordlikeness ratings. That is, would Mandarin 
speakers rate T2 gaps as less wordlike than the T1, T2, and T4 gaps? The results are graphed in 
Figure 5, which shows that T3 syllables, instead of T2 syllables, among gaps and real words were 
rated as the least wordlike, as indicated by the significant T3 effect (p = .007; Table 3). Post-
hoc tests using the emmeans package (Lenth, Singmann, Love, Buerkner, & Herve, 2019) showed 
that, though T2 was rated as less wordlike than T1 and T4, the ratings for T2, T1, and T4 did not 
significantly differ. These patterns held true in both words and gaps, as indicated by the lack of 
a Tone*Lexicality interaction (all p > .05).

These findings diverge from the patterns observed in the corpus in the following ways. First, 
T2 gaps, rather than T3 gaps, were found to be over-represented. If the wordlikeness ratings 
strictly followed the pattern observed in our corpus study, we should have seen T2 gaps judged 
as the least wordlike. Instead, T3 gaps were rated as the least wordlike. Second, Mandarin 
speakers also rated T3 lexical syllables as less wordlike than lexical syllables with other tones, 
a pattern that also diverged from the Mandarin speakers’ linguistic experience, as there were 
fewer T2 lexical syllables in the corpus (Figure 6). Furthermore, T2 is the least frequent tone 
for lexical syllables, as indicated by a calculation of token and type frequency (again, based on 
syllables, not morphemes) of Mandarin tones using the TMC corpus (Tseng, 2019) (Table 4). 
As such, the aversion to T3 lexical syllables cannot be attributed to the linguistic experience 
of the Mandarin native speakers. One possible explanation is that T3, being a complex 
contour tone, is more marked than the other tones in Mandarin, which may lead to it seeming  
less wordlike.

Figure 5: Standardized wordlikeness ratings as a function of tone and lexicality.
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In our corpus study, we also found more T3 gaps as the definition of gaps was shifted from the 
broad to the narrow view relative to the other tones. We speculated that the large number of 
T3 gaps might have arisen from avoiding the confusability between T2 and T3, as a T3 becomes 
a T2 before another T3 in a tone sandhi process. To explore this idea in terms of wordlikeness 
judgments, we compiled a subset of T2 and T3 gaps from the data comparing how Mandarin 
speakers rated T2 and T3 gaps whose T3 or T2 counterparts were not gaps as opposed to the T3 
and T2 gaps with counterparts that were also gaps. For example, T3 [tsuŋ]214 ‘always’ is a lexical 
syllable, but T2 *[tsuŋ]35 is a gap; however, Mandarin speakers would still have experience with 
T2 *[tsuŋ]35 as a sandhi form of T3 [tsuŋ]214. In contrast, both T2 *[ɻɹ]̩35 and T3 *[ɻɹ]̩214 are gaps, 
so Mandarin speakers would not have been exposed to either form. Figure 7 shows the results 
of this analysis, which indicates that there was indeed a general tendency for T2 gaps with T3 
lexical syllable counterparts to be given higher wordlikeness ratings. This suggests that T2 gaps 
may have been interpreted as a sandhi-ed T3, thereby improving their wordlikeness ratings. 
This trend, however, was not observed with T3 gaps with T2 lexical syllable counterparts, since 

Figure 6: Number of existing syllables as a function of tone from the corpus study.

Token frequency Type frequency

T1 105168 272

T2 96586 220

T3 129505 250

T4 228182 301

Table 4: Tone frequency in real words from TMC corpus (Tseng, 2019).
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surface T3 cannot be derived from T2 by any sandhi process in Mandarin. Chien et al. (2017) 
observed a similar asymmetrical pattern: Presenting a T3 prime facilitated a lexical decision for 
a T2 (underlyingT3)-T3 disyllabic word, while presenting a surface T2 prime did not facilitate 
a T2 (underlyingT3)-T3 disyllabic word. Our analysis of these subset data suggests that there is 
a close relationship between T2 and T3 in a direction that can be predicted by the T3 sandhi 
in Mandarin Chinese. The higher wordlikeness ratings of T2 gaps may partially explain why T3 
words and gaps were rated as less wordlike overall (cf. Section 3.2.1).

3.2.2. Corpus observation: More T2 and T3 gaps with voiceless onsets but fewer T1 
gaps with voiceless onsets
We found in our corpus study, and others have observed diachronically and cross-linguistically, 
that T2 and T3 syllables, with initially low f0, are less compatible with voiceless onsets giving 
rise to more T2 and T3 gaps with voiceless onsets. In contrast, T1, with an initially high f0, is 
more compatible with a voiceless onset and thus there are fewer T1 gaps with voiceless onsets. 
In our wordlikeness rating experiment, we found a significant Tone*OnsetVoicing interaction 
driven by the higher wordlikeness ratings of T1 gaps with voiceless onsets (T1*OnsetVoicing, 
p = .025; Table 3), as shown in Figure 8. Post-hoc tests using the emmeans package (Lenth 
et al., 2019) confirmed no other Tone*OnsetVoicing interactions. However, the same was not 
observed for T2 and T3 gaps with voiced onsets, despite the compatibility between these 
tones with voiced onsets. This finding could be attributed to the general disfavoring of T2 
and T3.

Figure 7: Standardized wordlikeness ratings on T2/T3 gaps in which the T3/T2 counterparts are 
either gaps or real words.
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3.2.3. The effect of lexical statistics
Previous studies have demonstrated effects of lexical statistics for real words and unattested 
forms. Here, we aimed to determine if such effects would be present in the wordlikeness 
judgements of both gaps and lexical syllables. We found a significant NeighborhoodDensity effect 
(p = .027; Figure 9), indicating that the more neighbors the syllable had, the more wordlike it 
was judged. These effects on lexical syllables and gaps were comparable, as suggested by the lack 
of interactions with Lexicality. These findings are in line with those in Lai (2003) and Gong and 
Zhang (2021). A SyllableGapFrequency*Lexicality interaction (p = .008; Figure 10) was found, 
since only gap syllables were judged as more wordlike the more tonal neighbors they had. No 
SyllableFrequency or PhonotacticProbability effect was found.

Figure 8: Standardized wordlikeness ratings as a function of onset voicing.

Figure 9: Standardized wordlikeness ratings as a function of standardized neighborhood density.
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3.3. Summary
Based on the results of the wordlikeness judgement task, the patterns found in Mandarin 
speakers’ perception of accidental gaps did not entirely match those found in our corpus study 
or other cross-linguistic studies. The Mandarin speakers rated T3 as less wordlike than T2, T1, 
and T4, both for gaps and lexical syllables, a result that was not predicted based on the patterns 
observed in our corpus study alone. We attributed this to the marked complex contour of T3. 
Furthermore, T2 and T3 are confusable due to the aforementioned tone sandhi process. Mandarin 
listeners’ experience with T3 sandhi may have caused T2 gaps to be considered more acceptable 
to some degree, particularly when their T3 counterparts were real words. Mandarin listeners’ 
judgements were not affected by syllables type. In fact, gaps with different syllable types were 
rated comparably. We did, however, find that T1 gaps with voiceless onset were judged as more 
acceptable, a pattern that was also observed in our corpus study and cross-linguistically.

We also found that, similar to lexical syllables, gap syllables were affected by neighborhood 
density—the more neighbors the syllable had, the higher the ratings.

4. Modeling wordlikeness with phonotactic grammars
In this section, we model the results of the wordlikeness experiment with constraint-based 
grammars using the UCLA Phonotactic Learner (Hayes & Wilson, 2008) to explore the extent 
to which Mandarin lexicon is useful in establishing a phonotactic grammar that models the 
speakers’ tonotactic knowledge. To answer this question, we generated tonotactic constraints in 
three settings according to the degree of lexical access. In the first setting, we built the tonotactic 
grammar with the learner entirely from the inductive process, reflecting the view that the lexicon 

Figure 10: Standardized wordlikeness ratings as a function of Syllable Gap Frequency.



19Jin et al: Identifying generalizable knowledge from the distribution of tonotactic accidental gaps in Mandarin

itself is sufficient as the source of phonotactic knowledge. In the second setting, we used the 
lexicon and the inductive process to select and weight a small set of typologically motivated 
constraints, reflecting the view that phonotactic knowledge is built based on a smaller hypothesis 
space in which inductive learning also plays a role. In the third setting, the tonotactic grammar 
also contains typologically motivated constraints but makes no reference to the lexicon and the 
inductive process, reflecting the view that innate constraints are separate from lexical knowledge. 
These settings enable us to more accurately evaluate the role of lexical statistics in shaping native 
speakers’ tonotactic knowledge as revealed through the wordlikeness ratings.

The UCLA Phonotactic Learner is an inductive learning tool that takes a wordlist as input and 
yields a constraint-based phonotactic grammar based on the principle of Maximum Entropy (Della 
Pietra et al., 1997; Goldwater & Johnson, 2003; Hayes & Wilson, 2008; Zuraw & Hayes, 2017). The 
induced grammar contains surface constraints that are weighted as in the framework of Harmonic 
Grammar (Legendre, Miyata, & Smolensky, 1990; Smolensky & Legendre, 2006). The constraints 
refer to sequences of under-attested natural classes in the wordlist. The natural classes are defined 
by a feature matrix provided by the user prior to a learning simulation. The learner assumes a 
probability space shared by all possible word forms based on the segments that are provided. 
Unattested and under-attested forms in the provided lexicon are penalized, which can be translated 
into lower probabilities of those forms; meanwhile, the learner increases the probabilities that it 
assigns to the attested forms, especially over-attested ones, in the lexicon. Maximum Entropy here 
thus refers to the fact that the weights in the grammar are induced in a way that maximizes the 
probabilities of the possible word forms that the training lexicon is drawn from, not just the lexicon 
itself. The induced constraints target sequences of natural classes. For example, a constraint that 
penalizes consonant clusters bears the form of *[+consonantal][+consonantal].

A few parameters control how the learner induces a grammar. The adjusted observed-
over-expected (O/E) threshold restricts the learner to only induce constraints that refer to 
co-occurrences of natural groups whose adjusted O/E ratio is below a specified number. The 
O/E ratio describes the actual number of occurrences of certain combinations (O) divided by 
the expected number (E) based on random and unrestricted combinations. For example, given 
a strictly CV language with only five vowels /a, i, y, o, u/ and three onset consonants /p, b, t/, 
we would expect six occurrences of [+labial][+round] syllables (i.e., /po/, /bo/, /pu/, /bu/, 
/py/, /by/). If we only see /po/ in the actual lexicon, the O/E of [+labial][+round] would be 
1/6 ≈ 0.167. A smaller number indicates that a particular sequence is under-attested. The UCLA 
Learner uses the statistical “upper confidence limit” (Mikheev, 1997; Albright & Hayes, 2002, 
2003) to adjust O/E. This adjustment method has the effect of treating generalizations with a 
larger E as stronger. For example, under this method, the difference between an O/E of 0/10 and 
0/1000 would be adjusted to 0.22 and 0.002, respectively.
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The user can also provide a number of constraints that the learner should aim to induce. 
Beyond affecting the size of the induced grammar, varying the targeted number of constraints 
also alters the nature of the learned constraints. The learner prioritizes inducing constraints 
with a lower adjusted O/E value. This is referred to as the “accuracy” heuristic. Given the same 
level of accuracy, the learner prioritizes constraints that describe smaller n-grams (e.g., bigrams 
preferred over trigrams) and constraints with natural classes that cover more segments. This is 
referred to as the “generality” heuristic. With these two heuristics, constraints that are induced 
earlier or are induced when a simulation aims for fewer constraints would be more general and 
accurate (i.e., exceptionless or with a larger E).

Finally, the user can specify the maximum n-grams a constraint should try to capture. A larger 
n number increases the number of possible constraints for the learner to consider, especially 
given a larger number of natural classes. For example, with 400 natural classes, there would be 
160,000 possible bigram constraints, 64 million possible trigram constraints, 26 billion possible 
4-gram constraints, and 10 trillion possible 5-gram constraints; thus, bigrams and trigrams are 
preferred for segmental constraints (Hayes & Wilson, 2008).

The grammar induced by the learner can then be used to assign harmonic scores to word forms, 
and the scores can be compared with results of behavioral experiments, such as wordlikeness and 
lexical decision tasks (Berent et al., 2012; Daland et al., 2011; Gallagher et al., 2019; Goldwater 
& Johnson, 2003; Hayes & White, 2013; Wilson & Gallagher, 2018). The inductive process can 
also start with a set of pre-written constraints. In such cases, the learner can be used to add more 
constraints to the grammar or simply to determine the weights of the pre-written constraints 
based on a provided list of word forms.

In the current study, we extend this methodology to the modeling of wordlikeness ratings 
of syllable-tone gaps. This provides an opportunity to employ a computational learner to model 
possible syllable-tone phonotactics, which has not yet been fully explored in the literature. A 
few recent studies have employed similar approaches in using phonotactic well-formedness to 
measure experimental results in tone languages. Gong (2017) also used the UCLA Phonotactic 
Learner, but with two crucial differences. First, his data came from a visual lexical decision 
experiment, where stimuli were represented with Bopomofo, a phonetic alphabet used in Taiwan 
(Myers & Tsay, 2005). Second, and more importantly, he focused solely on segmental patterns 
without modeling syllable-tone combinations and found that unattested segmental combinations 
with higher harmonic scores elicited a higher proportion of wordlike responses and shorter 
response times. In a study similar to ours, Gong and Zhang (2021) compared wordlikeness 
ratings and harmonic scores from the UCLA Phonotactic Learner. Their approach also compared 
handwritten and induced grammars; however, the focus of their modeling was on attested and 
unattested forms in Mandarin. Moreover, their stimuli only included syllables with a high tone, 
without a specific focus on tonotactic gaps as in this study.
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In a similar line of research, Do and Lai (2020) modeled nonce syllables in Cantonese, 
including both unattested segmental combinations and syllable-tone gaps. To estimate the 
probability of a syllable-tone combination, they used the probability of tone given the entire 
or part of the segmental strings. For example, the probability of /pit/55 was estimated by the 
likelihood of /pit/ having the high level tone (i.e., P(X55 | pit)), the likelihood of a syllable 
with the vowel /i/ having the high level tone (i.e., P(X55 | _i_), the likelihood of a syllable with 
the onset /p/ having the high level tone (i.e., P(X55 | p_)), the likelihood of a syllable with 
the coda /t/ having the high level tone (i.e., P(X55 | _t)), and the likelihood of a syllable with 
the rime /it/ having the high level tone (i.e., P(X55 | _it)). These probabilities were estimated 
by multinomial logistic regression analyses. Their Bayesian statistical analysis showed that 
phonotactic probabilities calculated in this way affected how wordlike a nonword syllable was 
judged to be, but in cases where the stimuli were judged to be absolutely unwordlike, there was 
no effect of phonotactic probability.

This study complements previous studies by testing a range of phonotactic grammars with 
varying degrees of access to different types of lexical data on how well they model wordlikeness 
ratings. More importantly, by testing tonotactic constraints and weights that reflect statistics gleaned 
from the lexicon as well as those that do not, we aim to tease apart statistical patterns of gaps and 
universal markedness and how they may account for native speakers’ tonotactic knowledge.

The rest of this section is organized as follows: Section 4.1 describes the different settings for 
building the constraint-based phonotactic grammars. Section 4.2 discusses the induced phonotactic 
constraints, particularly whether they capture similar generalizations by typologically-motivated 
markedness constraints. Section 4.3 examines the correlation between the phonotactic grammars’ 
well-formedness scores (MaxEnt scores) and the wordlikeness ratings from our behavioral 
experiment, with a focus on whether the inductive learning process from the lexicon is necessary 
for building a grammar that predicts the behavioral results. Finally, Section 4.4 summarizes our 
analysis on tonotactic grammars.

4.1. Building the phonotactic grammars
The set of phonetic symbols used in our analysis is shown in Table 5, with a breakdown of 
prosodic positions in which these sounds may occur. The symbol set was similar to that in Gong 
and Zhang (2021), treating [e] and [o] as separate sounds from [ə] despite a possible phonemic 
analysis that treats them as the same underlying phoneme. The learner was thus expected to 
induce phonotactic constraints that describe the complementary distribution of [e] and [o]. 
In the other two instances of complementary distribution, our symbol set took an allophonic 
analysis. First, the apical vowels behind sibilants were transcribed as /i/ (similar to Gong and 
Zhang). Second, unlike Gong and Zhang who separated /a/ and /ɑ/, we transcribed the low 
vowel as /a/ regardless of where it occurred. We also added the vowel /ɚ/, which was not 
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included in Gong and Zhang’s study. All segments were annotated with the distinctive features 
required by the learner. Following Gong and Zhang, we used binary place features.

We applied Hayes and Wilson’s (2008) treatment of lexical stress to the four lexical tones. 
Specifically, vowels with different tones were treated as separate vowel types (Kirby & Yu, 2007). 
For example, /a/ with different tones was transcribed as /a/55, /a/35, /a/214, and /a/51 in the 
lexicon. Following Gong and Zhang (2021), we used privative tonal features to refer to these four 
tones. This treatment represents a null hypothesis concerning how the tones may be grouped into 
natural classes; that is, we did not force tones to be grouped into [+high tones] or [+rising tones] 
and bias the learners towards adopting such generalizations. Under this treatment, a constraint 
penalizing voiced onsets in T1 syllables would bear the form of *[+voice,+consonantal][T1]. 
Note that this approach can also handle the interaction between tones and vowels, penalizing 
certain tone-vowel combinations. For example, *[+low, T3] penalizes low vowels in T3. This 
way, under-attested combinations of classes of consonants, vowels, and tones could all be 
formulated and induced as constraints by the learner.

In addition to the provided segmental and tonal features, the learner adds a [syllable 
boundary] feature (abbreviated as [sb] henceforth). The feature describes the contrast between 
the syllable boundary ([+sb]) and non-boundary tokens ([−sb]), which essentially refers to 
all segments. This is how the learner expresses constraints that refer to syllable boundaries. 
For instance, *[+consonant][+sb] is a constraint that penalizes codas. This also allows the 
learner to describe a constraint that refers to “all segments” in a particular position. For example, 
*[+consonant][−sb][+syllabic] penalizes any segment between a consonant and a vowel.

The learner’s inductive process required a list of word forms as the training data. We used a 
word list with 16,684 distinct lexical items from the TMC corpus. During training, these lexical 
items were broken down into 36,623 monosyllabic units (i.e., individual tokens of syllable-tone 
combinations). Similar types of training data have been used for inducing phonotactic constraints 
(e.g., Gong & Zhang, 2021; Gouskova & Gallagher, 2020; Hayes & Wilson, 2008). Since a syllable-
tone combination may appear as homophonous, the word list did include some information 
about type frequency of distinct syllable-tone combinations in the lexicon. For example, the 
training data were given the information that the syllable-tone combination /tʰa55/ occurs in 

C p pʰ m f t tʰ n l tɕ tɕʰ ɕ ts tsʰ s tʂ tʂʰ ʂ ʐ k kʰ x

G j w ɥ

V a ə e o i u y ɚ

X i u n ŋ

Table 5: Segmental inventories in different prosodic positions in the learning simulation.
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24 distinct words in the TMC corpus. Note that this type of frequency count only refers to how 
a particular tone-syllable combination occurs in unique lexical items and makes no reference 
to lexical token frequency in the TMC corpus, which was used as the Frequency variable in our 
experimental analysis.

Since our goal was to see the different extents to which the lexicon is needed for inducing 
tonotactic constraints that best model speakers’ wordlikeness ratings, we ran the learning 
simulation in three different settings: The strong induction setting, the weak induction setting, 
and the no induction setting, each of which are described in greater detail in the following.

The Strong Induction setting: We ran learning simulations that aimed to induce 300 
constraints. The maximum constraint length was set to trigrams. Out of the first 75, 150, and 
all 300 constraints6, we selected constraints referring to segment-tone interactions, resulting 
in increasing sets of 25, 78, and 210 inductive tonotactic constraints (hereafter, the Small, 
Medium, and Large Strong Induction grammars). As mentioned earlier, constraints that are 
learned later in the simulation tend to be less accurate and less general. Grammars with more 
constraints learned later in the simulation and grammars aiming to learn more constraints are 
more likely to overfit to the lexicon by capturing statistical patterns that describe accidental 
gaps instead of describing more general phonotactic knowledge. On the other hand, grammars 
with only a few constraints induced in an early stage might not have captured relevant 
phonotactic knowledge, as only strong generalizations that target larger natural classes would 
be included. By varying the number of tonotactic constraints in this setting, we tested the 
extent to which the levels of statistical fit needed to be leveraged to induce a grammar that 
best models speakers’ wordlikeness ratings. Finally, since we are only interested in tonotactic 
constraints, we only took the induced constraints that refer to segment-tone interactions from 
the simulations.

The Weak Induction setting: In this setting, we did not ask the learner to induce novel 
tonotactic constraints. Instead, we made it reweight a smaller set of ten typologically-
motivated constraints, shown in (1) below. The constraints *[T3] and *[T2] are motivated 
by the typological markedness of contour and rising tones (e.g., Yip, 2002; Zhang, 2001). 
The other eight constraints refer to the incompatibility of high tones with voiced onsets, 
and low tones with voiceless onsets (e.g., Hsieh & Kenstowicz, 2008; Kenstowicz & Suchato, 
2006; Ohala, 1978; Sagart, 1999; Yip, 2002). It is worth noting that since tones are carried 
by vowels in our learning simulation, the onset-tone interaction in syllables with an onglide 
has to be captured in a separate series of constraints (e.g., *[+voice][−consonantal][T1] and 

 6 Targeting between 100 and 200 inductive constraints is common in recent works (e.g., Gouskova & Gallagher, 2020; 
Gallagher et al., 2019). We took the midpoint of this range, as well as the half and the doubled numbers to explore 
the potential effects of underfit and overfit to the lexicon.
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*[−voice][−consonantal][T2]). This Weak Induction setting represents a scenario where the 
learner has a smaller hypothesis space concerning what the relevant and important tonotactic 
constraints are in this language.

(1) Typologically-motivated tonotactic constraints:
Markedness of contour and rising tones: *[T3], *[T2]
Markedness of voiced onsets with high tones: *[+voice][T1], *[+voice][T4],
*[+voice][−consonantal][T1], *[+voice][−consonantal][T4]
Markedness of voiceless onsets with low tones: *[−voice][T2], *[−voice][T3],
*[−voice][−consonantal][T2], *[−voice][−consonantal][T3]

The No Induction setting: Phonotactic grammars in this setting also contain typologically-
motivated tonotactic constraints. The difference from the Weak Induction setting is that the 
weights of these constraints were decided independent of the lexicon. This represents a hypothesis 
where tonotactic constraints do not need to be informed by lexical knowledge, which we also call 
the baseline setting.

Since we are interested in tonotactic constraints, in all three settings, we used Gong and 
Zhang’s (2021) 38 handwritten segmental constraints (Appendix II) along with the induced and 
typologically-motivated tonotactic constraints. These handwritten constraints refer to systematic, 
allophonic, and accidental segmental gaps in the Mandarin lexicon, and have shown to be 
much more effective in modeling native speakers’ behavioral results than inductive segmental 
constraints. These segmental constraints served as the baseline grammar for accounting for 
variances in wordlikeness ratings that are not related to segment-tone interactions.

As part of this process, in the Strong Induction setting, the induced tonotactic constraints 
were added to the handwritten segmental constraints before undergoing another round of 
reweighting. In the Weak Induction setting, the typologically-motivated tonotactic constraints 
were reweighted along with the handwritten segmental constraints. In the No Induction setting, 
the handwritten segmental constraints were themselves weighted by the lexicon and used 
alongside the typologically-motivated tonotactic constraints. In other words, in all three induction 
conditions, the handwritten segmental constraints were weighted by the lexicon. This was a 
methodological choice made to simplify the non-tonal part of the grammar induction process. 
However, we acknowledge the possibility that, similar to tonotactic constraints, there may be 
other methods for assigning weights to segmental constraints that better account for native 
speakers’ knowledge of segmental phonotactics. The procedure for generating the phonotactic 
grammars is summarized in Table 6.
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4.2. The induced tonotactic constraints
In this section, we discuss the content of the inductive tonotactic constraints, with a focus on whether 
they refer to the markedness of T3 and T2, or to the interaction between onset voicing and tone.

From the Small Strong Induction grammar with 25 induced tonotactic constraints, six 
constraints referred to the interaction between onset voicing and tone in the same direction as 
the typologically-motivated constraints, as shown in Table 7. Two of these penalized sequences 
of voiced onsets before a vowel with T1, even though they targeted smaller natural classes (e.g., 
non-/a/ vowel and non-labial nasals) instead of all voiced onsets and all vowels with T1. Other 
constraints consistent with the hypothesized direction targeted much smaller natural classes: 
Non-labial nasals before /o, ə, ɚ/ with T4; /s, ɕ/ before non-high vowels with T2; and the 
aspirated /tʰ, tsʰ, tɕʰ/ before mid vowels with T3. No constraints could be interpreted as a general 

Setting Procedure Number of res-
ulting grammars

Strong 
Induction

Pick the first 75, 150, and all 300 constraints from a 
simulation

 pick tonotactic constraints (25, 78, 210)

 reweight these tonotactic constraints along with 38 
handwritten segmental constraints

3

Weak 
Induction

Weight 10 typologically motivated constraints along 
with 38 handwritten segmental constraints

1

No 
Induction 
(baseline)

Weight 38 handwritten segmental constraints

 use the weighted constraints along with 10 typolo-
gically motivated constraints with baseline weights (a 
weight of 3 for all 10 constraints)

1

Table 6: Generating phonotactic grammars with different tonotactic constraints and weights.

Constraint Weight Penalized sequences

*[+cons,+voice][−low,T1] 2.164 Voiced onset and non-/a/ vowels in T1

*[+nasal,−labial][T1] 2,753 Onset /n/ in T1

*[+nasal,−labial][−high,−low,−front,T4] 3.772 /n/ before /o, ə, ɚ/ in T4

*[−voice,+cont,+ant][−high,T2] 1.512 /s, ɕ/ before non-high vowels in T2

*[+aspirated,+anterior][−high,−low,T3] 1.673 /tʰ, tsʰ, tɕʰ/ before /e, o, ə, ɚ/ in T3

*[−voice,+coronal][−high,+front,T3] 2.296 Voiceless coronals before /e/ in T3

Table 7: Constraints from the Small Strong Induction grammar that targeted the interaction 
between onset voicing and tones in the expected directions given typological observations.
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restriction against T2 or T3 syllables, even though there were slightly more constraints referring 
to sequences with T3 and T2 (seven and eight constraints, respectively) than with T1 and T4 
(four and six constraints, respectively). See Appendix III for the full list of inductive tonotactic 
constraints in the Small Strong Induction grammar.

In the Medium Strong Induction grammar, there were a few constraints that penalized different 
subsets of the interaction between voiced onsets and T1. These are shown in Table 8. Other than 
the constraint *[+voice][−sb][T1], which penalized voiced onsets in a T1 syllable with an 
onglide, the other four constraints again targeted smaller natural classes than the typologically-
motivated constraints.7 It is also worth noting that there were no such constraints for T4.

Similar to the Small Strong Induction grammar, constraints that penalized voiceless onsets and 
T2/T3 mostly targeted smaller natural classes down to two consonants and one vowel. Some of 
these are shown in Table 9. Again, there were no constraints that targeted T2 and T3 in general, 
though slightly more constraints targeted T2 and T3 (26 and 21 constraints) than T1 and T4 (18 
and 13 constraints).

 7 The learner used the binary feature [sb] to label syllable boundaries ([+sb]) and all non-boundary symbols (i.e., all 
segments ([−sb])).

Constraint Weight Penalized sequences

*[+voice][−front][−back,T1] 1.919 Voiced onsets before non-back vowels in 
a T1 syllable with the onglide /w/

*[+cons,+voice][+low,T1][−labial] 1.98 Voiced onsets before /a/ in a T1 syllable 
with nasal coda

*[+voice,+delayed][T1] 2.269 The onset /ʐ/ in a T1 syllable

*[+voice][−sb][T1] 4.124 Voiced onsets in a T1 syllable with an 
onglide ([−sb] refers to the natural 
class of all “non-boundary” segments.)

Table 8: Induced constraints in the Medium Strong Induction grammar that refer to incompatibility 
between voiced onsets and T1/T4.

Constraint Weight Penalized sequences

*[−aspirated][T2][+consonantal] 3.982 Unaspirated onsets in T2 syllables with codas

*[−voice,+cont,−labial,−dorsal] 
[+high,+round,T2]

2.024 /s, ʂ/ before /u, y/ in T2

*[−aspirated,−anterior] 
[−high,+back,T3]

1.954 Unaspirated onsets before /o/ in T3 syllables

Table 9: Induced constraints in the Medium Strong Induction grammar that referred to 
incompatibility between voiceless onsets and T2/T3.
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A similar trend was observed when we examined the additional constraints in the Large Strong 
Induction grammar: There were constraints that penalized voiced onsets and T1/T4 in the 
same direction (e.g., *[+voice,−coronal][−sb][−back,T1], *[+nasal][−front][−back,T4]) 
and voiceless onsets and T2/T3 (e.g., *[+aspirated,labial][−front][+round,T2], *[−voice,−
dorsal][−back][+round,T3]). As the additional constraints tended to target sequences of smaller 
natural classes, there were again no constraints specifically targeting T2 and T3 in general, but 
still more constraints targeting sequences bearing subsets of T3 and T2 (64 and 59 constraints) 
syllables than T1 and T4 (44 and 43 constraints).

Beyond these constraints that could be interpreted as being relevant for onset-tone 
interactions in the expected directions, many more constraints targeted other aspects of 
syllable-tone interactions such as dorsal onsets in certain vowel-tone configurations (e.g., 
*[+consonantal,−labial,−coronal][+front,T2]), certain groups of onsetless vowels in 
certain tones (*[+sb][−high,+back,T2]), or the /ɚ/ vowel with T1. They could also target 
specific tonotactic gaps; for example, *[+sb][+low,T3] describes the absence of onsetless  
/a/ in T3.

Overall, among all the inductive onset-tone interaction constraints, those involving voiced 
onsets and T1 tended to be more general, targeting broader natural classes). While constraints 
penalizing voiced-T4 and voiceless-T2/T3 combinations were also induced, they mostly targeted 
smaller natural classes. The completely bottom-up inductive method also failed to identify 
constraints that targeted a larger proportion of T2 and T3 syllables, although there were more 
constraints that targeted subsets of the interaction between T2/T3 syllables and the natural 
classes referring to onsets and codas.

4.3. Correlation between harmonic scores and wordlikeness ratings
Grammars generated in different settings were used to assign harmonic scores H(x) to 
each stimulus. The correlation between wordlikenss ratings and harmonic scores was 
then used to evaluate how well different grammars predict the experimental results. For 
each stimuli x, a grammar assigned a harmonic score based on the summed weights of the 
constraints violated by x, as shown in (3a). In this study, we follow Gong and Zhang (2021) 
in using MaxEnt scores calculated by raising e to the negative power of the harmonic score 
H(x), as shown in (3b) The MaxEnt scores ranged from 0 (least well-formed) to 1 (most  
well-formed).

(2) Harmonic score and MaxEnt score
a. H(x) = ∑i wi Ci(x)
b. MaxEnt(x) = e–H(x)
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Table 10 shows the correlation between the wordlikeness ratings and the MaxEnt scores assigned 
by the different grammars. Following Gong and Zhang (2021), we report the correlation between 
MaxEnt scores and wordlikeness ratings of all stimuli, including both the gaps and the lexical 
syllables (“all ratings”). Additionally, we report correlation results specifically for gaps, as we are 
particularly interested in how different phonotactic grammars account for participants’ ratings 
of items outside of the lexicon. However, we have chosen not to report or discuss the correlation 
between ratings and MaxEnt scores for lexical syllables, as the high ratings for these syllables 
may create a strong ceiling effect that could reduce the informativeness of the phonotactic effect.

The correlations show that having more inductive tonotactic constraints allowed the grammars’ 
harmonic scores to better predict the overall wordlikeness ratings. However, when we focus on 
the ratings for gaps, the grammars with typologically motivated tonotactic constraints (i.e., those 
with the Weak and No Induction settings) vastly outperformed the grammar with inductive 
tonotactic constraints (i.e., that with the Strong Induction settings). Having more inductive 
tonotactic constraints in the Strong Induction setting helped predict overall wordlikeness ratings 
but did not improve predictions on the ratings for gaps only, suggesting that the inductive 
tonotactic constraints are increasingly able to differentiate between lexical syllables and gaps. 
This contrast suggests that while learning more nuanced segment-tone interactions in the lexicon 
helps further modeling the difference between lexical syllables and gaps, it was not very helpful 
in modeling how native speakers judged certain gaps to be more wordlike. Another finding worth 
noting is that the baseline grammar with the No Induction setting outperformed the grammar 
with the Weak Induction setting in which the constraints were weighted by the lexicon.

Figure 11 shows the correlations between the wordlikeness ratings and the MaxEnt scores 
from the grammars with inductive constraints (the Strong Induction condition). With only a 
small number of inductive tonotactic constraints, very few stimuli were marked as less well-
formed. When more tonotactic constraints were induced, gradient differences in well-formedness 
started to emerge, and more gaps began receiving low MaxEnt scores, which explains why the 

Grammar Number of tonot-
actic constraints

Correlation 
with all ratings

Correlation 
with gap ratings

No Induction baseline 9 0.229 0.372

Weak Induction 9 0.273 0.302

Strong Induction (small) 25 0.232 0.059

Strong Induction (medium) 78 0.468 0.117

Strong Induction (large) 210 0.558 0.116

Table 10: Comparison of correlation between wordlikeness ratings and MaxEnt scores from 
different grammars.
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correlation between the MaxEnt scores and wordlikeness ratings increased as the number of 
inductive constraints grew. However, this trend did not strengthen the correlation between the 
MaxEnt scores and the ratings for gaps.

Figure 12 shows the correlation between the MaxEnt scores and wordlikeness ratings for the No 
Induction and Weak Induction grammars, both of which consisted of only typologically-motivated 
tonotactic constraints. For the No Induction grammar with baseline weights, the MaxEnt scores 
of a stimulus decreased if it was with T3 and T2, had a voiced onset with T1/T4, or had a 
voiceless onset with T2/T3, which explains the almost binary distribution horizontally. There 
were also a large number of lexical syllables with very low MaxEnt scores, which explains the 
relatively poor correlation between the MaxEnt scores and wordlikeness ratings in this condition. 
The fact that the No Induction baseline grammar failed to distinguish lexical syllables and gaps 
also suggests that it may simulate a cognitive module for tonotactics independent of the lexicon.

Figure 11: Correlation between the MaxEnt scores and wordlikeness ratings from the Strong 
Induction grammar. Light dots refer to lexical syllables, and dark dots refer to gaps. Horizontal 
jittering with a range of 0.02 was applied to the dots to reduce overlaps. The solid lines indicate 
slopes for MaxEnt scores predicting ratings for all items, and the dotted lines indicate slopes for 
predicting ratings for gaps only. The shading represents the 95% confidence interval for the slopes.
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The Weak Induction grammar, on the other hand, only penalized items with T3 and T2 as 
well as items with a voiced onset and T1 (Table 11). In other words, based on the lexicon, the 
learner only found statistical support for the dispreference for T3, T2, and syllables with voiced 
onsets and T1. By incorporating these weights, the number of lexical syllables with low MaxEnt 
scores was greatly reduced, explaining the advantage of this grammar over the No Induction 
baseline grammar in terms of predicting ratings for all stimuli.

Figure 12: Correlation between the No Induction baseline (left) and Weak Induction grammars’ 
MaxEnt scores and wordlikeness ratings. Light dots refer to lexical syllables, and dark dots refer 
to gaps. Horizontal jittering with a range of 0.02 was applied to the dots to reduce overlaps. The 
solid lines indicate slopes for MaxEnt scores predicting ratings for all items, and the dotted lines 
indicate slopes for predicting ratings for gaps only. The shading represents the 95% confidence 
interval for the slopes.

Constraint Weights in Weak 
Induction grammar

Weights in No Induction 
baseline grammar

*[T3] 0.905 3

*[T2] 0.664 3

*[+voice][T1] 2.852/2.259 3

*[+voice][T4] 0 3

*[−voice][T2] 0 3

*[−voice][T3] 0 3

Correlation with overall ratings 0.273 0.229

Correlation with gap ratings 0.302 0.372

Table 11: Comparison of constraint weights in the No Induction baseline and the Weak Induction 
grammars.
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However, when we focus on gaps only, it is the No Induction grammar that best predicts the 
ratings. In other words, blindly penalizing certain types of stimuli (i.e., those with T3, T2, voiced 
onset-T1/T4, voiceless onset-T2/T3) can better explain which gaps were rated as more wordlike 
by the native speakers.

To explore the optimal weights for the typologically-motivated constraints, we altered the 
weights of the constraints in the No Induction grammar from the fixed baseline with a grid 
search: The No Induction grammar with all combinations of the five weights (0, 1.5, 3, 4.5, 6) 
for the typologically-motivated constraints were tested. We simplified the process by giving 
the constraints with and without reference to glides (e.g., *[+voice][T1] and *[+voice]
[−consonantal][T1]) the same weight in each combination, yielding a total of 15,625 (56) 
combinations of weights. We view this as an effort to locate an optimal configuration for 
the cognitive module independent of lexical knowledge when it comes to modeling the 
behavioral results.

Table 12 shows the weights for the typologically-motivated constraints in two of the 15,625 
grammars. The No Induction baseline and Weak Induction grammars (Table 11) are also listed for 
reference. The grammar that best predicted gap ratings weighted *[T3] heavily while placing smaller 
weights on *[+voice][T1] and *[+voice][T4] and no weight on other constraints. In other words, 
having a strong markedness constraint against the complex contour tone and modest constraints on 
voiced onsets and high tones helped predict the wordlikeness ratings for the gaps. Table 12 also 
lists the weights for the grammar that best predict the wordlikeness ratings for all test items. This 
grammar weighted the [+voice][T1] constraint heavily while assigning a smaller weight to *[T3].

Constraint No Induction: 
Optimized for 
gap prediction

No Induction: 
Optimized 
for overall 
prediction

No Induc-
tion: 
Baseline

Weak 
Induction

*[T3] 6 1.5 3 0.905

*[T2] 0 0 3 0.664

*[+voice][T1] 1.5 6 3 2.852/2.259

*[+voice][T4] 1.5 0 3 0

*[−voice][T2] 0 0 3 0

*[−voice][T3] 0 0 3 0

Correlation with all ratings 0.241 0.265 0.229 0.273

Correlation with gap ratings 0.428 0.369 0.372 0.302

Table 12: Comparisons of constraint weights for No Induction grammars that are best at predicting 
gaps. The No Induction baseline and Weak Induction grammars are listed for reference.
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The correlation between the MaxEnt scores of these “optimized” grammars and the wordlikeness 
ratings is shown in Figure 13. Compared with the No Induction baseline grammar, the lower 
end of the MaxEnt scores shows greater gradience. The difference between the overall-optimized 
and the gap-optimized versions is that the former penalizes lexical syllables less than the latter.

To further evaluate to what extent can we find the optimal weights for typologically-motivated 
tonotactic constraints, we ran 10,000 iterations of random weight assignments to *[+voice]
([−cons])[T1], *[+voice]([−cons])[T4], *[−voice]([−cons])[T2], *[−voice]([−cons])
[T3], *[T2], and *[T3]. That is, we assigned the same weights to the constraints with and 
without reference to glides. The random weights followed a uniform distribution between 0 
and 6. Figure 14 shows the distribution of grammars with typologically-motivated tonotactic 
constraints with random weights in terms of their correlation with the wordlikeness ratings for 
all stimuli (left) and gaps only (right).

Comparing the Weak Induction grammar to the No Induction grammar with random weights 
shows that weighting typologically-motivated tonotactic constraints based on the lexicon made 
the harmonic scores correlate almost as well as they possibly could given these constraints. On the 
other hand, when the focus was solely on the wordlikeness of gaps, weights based on the lexicon 
resulted in a very poor correlation between harmonic scores and the ratings relative to what 

Figure 13: Correlation between the No Induction grammars’ MaxEnt scores and wordlikeness 
ratings when the weights were the most successful at predicting all items (left) and gaps only 
(right) in the grid search. Light dots refer to lexical syllables, and dark dots refer to gaps. 
Horizontal jittering with a range of 0.02 was applied to the dots to reduce overlaps. The solid 
lines indicate slopes for MaxEnt scores predicting ratings for all items, and the dotted lines 
indicate slopes for predicting ratings for gaps only. The shading represents the 95% confidence 
interval for the slopes.
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the random weights could do. These differences were confirmed by statistical tests. The MaxEnt 
scores from the No Induction grammars with randomized weights had a weaker correlation with 
wordlikeness ratings than those from the Weak Induction grammar, according to a one-sample t 
test (t(9999) = –186, p < .0001). On the other hand, the MaxEnt scores from the No Induction 
grammars with randomized weights had a stronger correlation with the wordlikeness ratings 
than those from the Weak Induction grammar, according to a one-sample t test (t(9999) = 
148.17, p < .0001). In other words, while modeling the wordlikeness of all stimuli can benefit 
from the knowledge of statistical patterns in the lexicon, modeling the wordlikeness of tonotactic 
gaps does not need to be informed by the lexicon at all.

4.4. Summary
In this section, we explored whether statistical information from the Mandarin lexicon is sufficient 
or necessary to build tonotactic constraints that account for the wordlikeness ratings in our 
behavioral experiment. This was done in two steps. We first examined the constraints induced 
from the lexicon. We then examined the correlation between the wordlikeness ratings and the 
MaxEnt scores of the different grammars. We observed some general constraints against voiced 
onsets in T1 syllables, which was consistent with one of our typologically-motivated constraints. 

Figure 14: Distribution of the No Induction grammars with random weights for their correlation 
with the overall wordlikeness ratings (left) and ratings for gaps only (right). Horizontal lines 
indicate the mean correlation number (red), the correlation number for the Weak Induction 
(blue) and the No Induction baseline (yellow) settings.
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Even though we saw induced constraints that penalized voiceless onsets with T2/T3 and voiced 
onsets with T4, they mostly targeted much smaller natural classes and could be better viewed 
as constraints against specific accidental gaps. This potential “overfit” to accidental gaps in the 
constraint induction became more likely as the learner induced more constraints.

Our analysis of the correlation between the MaxEnt scores and wordlikeness ratings showed 
that speakers’ different ratings for lexical syllables and tonotactic gaps could be successfully 
modeled by tonotactic constraints directly induced from the lexicon (the Strong Induction 
grammar) by the UCLA Phonotactic Learner. For modeling the ratings for tonotactic gaps, 
grammars with a smaller number of typologically-motivated constraints (i.e., *[T3], *[T2], 
*[+voice][T1/T4], *[−voice][T2/T3]) having arbitrary and random weights almost always 
outperformed the grammars with these constraints weighted from the lexicon and grammars 
with inductive tonotactic constraints. In other words, nearly all potential combinations of 
this limited set of typologically-motivated tonotactic constraints yielded better results than 
the lexicon-informed grammars when modeling the wordlikeness ratings of gaps. Among the 
possible configurations, we found that a large weight for *[T3] and a relatively smaller weight 
for *[+voice][T1/T4] could make the grammar assign harmonic scores that best correlated with 
the wordlikeness ratings of gaps. The finding on the importance of [+voice][T4] is particularly 
interesting since it was not supported by the lexicon at all (i.e., the inductive process assigned no 
weights to this constraint).

In short, results with the UCLA Phonotactic Learner suggested that learning constraints from 
the lexicon is neither sufficient nor necessary when it comes to predicting the wordlikeness ratings 
of tonotactic gaps, which is consistent with a view that phonological grammar for tonotactics 
is potentially a module independent of lexical memory. Replications using other phonotactic 
modeling tools (e.g., neural network-based models as reported in Mayer & Nelson, 2020) are 
needed to provide further support to this view, particularly in a similar setup where a priori and 
lexically-informed knowledge are compared.

5. General discussion
This study investigated Mandarin tonotactic accidental gaps by looking for patterns in corpus 
data and comparing the findings to wordlikeness ratings and to the harmonic scores generated 
by the UCLA Phonotactic Learner. Our corpus study revealed certain trends in the occurrence of 
accidental gaps in Mandarin. Specifically, we found that T2 gaps were over-represented, followed 
by T3 gaps, and both tended to occur with closed syllables. T4 gaps were the least common, a 
result that could be attributed to a historical tonal merging process. We also found fewer T1 gaps 
with voiced onsets than T2 and T3 gaps, which were more likely to occur with voiceless onsets, 
a pattern that has also been observed cross-linguistically. In listeners’ wordlikeness ratings, 
however, T2, the tone with the most gaps, was not rated as the least wordlike. Instead, the 
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listeners rated T3 gaps as the least wordlike, a result that could be attributed to the markedness 
of the T3 contour. Furthermore, we found T1 gaps with voiced onsets were also rated as less 
wordlike, a pattern that was also observed in our corpus study. Although there was a significant 
difference in wordlikeness ratings between gaps and lexical syllables, they were both gradiently 
accepted as wordlike based on neighborhood density. Our findings across the corpus analysis, the 
wordlikeness rating experiment and modeling analyses are summarized in Table 13.

Taken together, not all patterns observed in the corpus were reflected in the wordlikeness ratings. 
For instance, contrary to the findings in the corpus, T2 gaps were not treated as the least wordlike 
by native speakers. Instead, T3 was rated the least wordlike. This pattern was not induced by the 
phonotactic learner, nor was the fact that T4, the tonal category with the fewest gaps, was rated 
as more wordlike. We attributed the speakers’ general aversion to T3 to the universal markedness 
of its complex tonal contour.

Some patterns, however, were robustly observed throughout this study. More T1 gaps 
were found with voiced onsets in the corpus, while more T2, T3, and T4 gaps were found with 

Corpus 
 analysis

Wordlikeness 
rating

Modeling with phonotactic 
grammars

What it means

More T2 
gaps

T3 least word-
like

*T2 is learnable from the lexical 
data but is not necessary for pre-
dicting wordlikeness ratings.

The *T3 constraint is effective in 
modeling ratings especially for 
gaps. *T3 is learnable from the lex-
ical data, but the induced weight 
was not as effective in predicting 
the ratings for gaps.

More T2 gaps is acci-
dental, while more 
T3 gaps may reflect 
an effect from typo-
logical markedness.

More gaps 
with voiced 
onsets for 
T1 vs. T2/
T3/T4

Voiced onset 
less wordlike 
for T1

*[+voice][T1] is learnable from 
the lexical data, but the induced 
weight is more useful for modeling 
all items than for modeling the gaps.

*[+voice][T4] was not learnable 
from the lexical data, but it helped 
increase the correlation between 
the MaxEnt scores and ratings, 
especially for gaps.

There are potentially 
real phonotactic con-
straints that are not 
entirely learnable 
from the lexicon.

More gaps 
with closed 
syllables

No effect Not explored. Not real phonotactic 
constraints

Table 13: Summary of the findings across the corpus analysis, the wordlikeness rating experiment, 
and modeling analyses.
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voiceless onsets. Among these patterns, we found T1 syllables with voiced onsets were rated as 
less wordlike, which suggests that T1 syllables with voiced onsets may not be as accidental as 
previously assumed; they also reflect psychologically real phonotactic restrictions regarding T1 
gaps and voiced onsets. While the lack of a T2-OnsetVoicing effect in the wordlikeness experiment 
may suggest that the pattern was purely accidental, it could be the case that the overall low 
scores for T2 caused the interaction to fail to show.

With the help of the UCLA Phonotactic Learner, we examined to what extent the lexical 
data could help induce constraints or weight handwritten constraints that best account for 
the wordlikeness rating results. The comparison showed the statistics from the lexicon were 
beneficial in inducing a grammar with tonotactic constraints that predicts the ratings for all 
stimuli. However, in predicting the ratings for tonotactic gaps only, typologically-motivated 
constraints without lexical access outperformed grammars with tonotactic constraints induced 
from the lexical data. Although important markedness constraints, such as *T3 and *[+voice]
[T1], were assigned weights when trained on the lexical data, grammars with these weights 
had a weaker correlation with wordlikeness ratings of gaps compared to grammars with 
arbitrary weights for these constraints. Crucially, iterations with random weight assignments 
revealed that lexically-informed weights were significantly worse than random weights in 
modeling gaps’ ratings. It is important to note that, despite our exploration of various constraint 
induction and weighting setups, the results we have obtained may still be limited by the UCLA 
Phonotactic Learner, the training data, and the simulation setups we have used. Therefore, it 
is uncertain whether our findings are indicative of limitations in grammar induction from the 
lexicon alone. If this finding can be replicated using other simulation tools and settings that 
compare a priori and lexically-informed phonotactic knowledge, it may suggest that universal 
markedness is more relevant than patterns in the lexicon for modeling the wordlikeness of 
tonotactic gaps.

In their explanation of similar dissociations between phonotactic knowledge and statistical 
generalizations in the lexicon in modeling nonword perception and production, Becker et al. 
(2011) proposed that UG serves as a filter on possible generalizations that humans can make 
(see also Davidson, 2006; Moreton, 2002), which may, in turn, facilitate the (over)-learning 
of phonetically motivated patterns The lack of such filters explains why inductive statistical 
models fail to model behavioral results since these models are prone to learning accidental 
statistical patterns (the “surfeit-of-the-stimulus” effect). Our findings are consistent with the 
predictions made by the proposal that only a subset of generalizations are possible, as shown 
by the success of typologically-motivated tonotactic constraints over inductive ones in modeling 
nonword tonotactics. We further showed that there is little evidence for an association between 
statistical patterns in the lexicon and the exact configurations of the possible constraints (i.e., 
constraint weights) other than the fact that information from the lexicon is helpful in modeling 
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the separation between gaps and lexical syllables. Since *T3 and *[+voice][T1/T4] both have 
phonetic motivations, innateness and phonetic naturalness of these constraints are both potential 
sources of such tonotactic knowledge. The findings regarding the roles of *T3 and *[+voice]
[T4] are particularly interesting, as they are not as strongly supported by statistical patterns 
in the lexicon as *[+voice][T1]. This suggests that *T3 and *[+voice][T4] may have been 
potentially overlearned from the lexicon. On the other hand, despite *T2 being supported by the 
lexicon, it was not relevant in modeling nonword tonotactics. This indicates that the speakers 
may have underlearned this statistical pattern.

This study contributes to the general understanding of unattested forms, especially involving 
tone-segment combinations, and extends the modeling of phonotactic well-formedness that has 
been previously restricted to segmental combinations to tone-syllable combinations.
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