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Having access to efficient technologies is essential for the accurate description and analysis of 
articulatory speech patterns. In the area of tongue ultrasound studies, the visualization/analysis 
processes generally require a solid knowledge of programming languages as well as a deep 
understanding of articulatory phenomena. this demands the use of a variety of programs for an 
efficient use of the data collected. In this paper I introduce a multimodal app for visualizing and 
analyzing tongue contours: uVA—ultrasound Visualization and Analysis. this app combines the 
computational power of r and the interactivity of Shiny web apps to allow users to manipulate 
and explore tongue ultrasound data using cutting-edge methods. One of the greatest strengths 
of the app is that it has the capability of being modified to adapt to the users’ needs. this has 
potential as an innovative tool for diverse academic and industry audiences.

Keywords: tongue ultrasound; gridlines; shiny app; dynamic analysis; distance; displacement; 
velocity; acceleration

1. Introduction
Speech analysis technologies have played a fundamental role in the understanding of how 
human language uses all available articulators for communication. Within the literature, 
there has been a strong emphasis on studying the tongue as one of the most important 
organs in speech production. There is a range of techniques which can be used for this 
purpose, including X-ray (Bressmann, Koch, Ratner, Seigel, & Binkofski, 2015; Verma, 
Tandon, Agrawal, & Prabhat, 2012), electropalatography (Barberena et al., 2017; Gibbon, 
Lee, & Yuen, 2010; N. R. Miller, Reyes-Aldasoro, & Verhoeven, 2019; Verhoeven, Miller, 
Daems, & Reyes-Aldasoro, 2019), magnetic resonance imaging (Hewer, Wuhrer, Steiner, 
& Richmond, 2018; Lim et al., 2019; Maekawa, 2019; Proctor, Lo, & Narayanan, 2015), 
electromagnetic articulography (Katz, Mehta, & Wood, 2017; Kocharov & Evdokimova, 
2019; N. R. Miller et al., 2019; Shadle, Proctor, & Iskarous, 2008; Zeroual, Hoole, & Gafos, 
2019), and ultrasound (Diskin et al., 2019; Mielke, Carignan, & Thomas, 2017; Zharkova, 
Gibbon, & Lee, 2017). Among these, ultrasound is used to examine correlates between 
tongue articulations and acoustic or phonological phenomena. Gick, Campbell, and Oh 
(2001) note that phonological contrast may not always be observable in the acoustic 
signal but may be observable in other levels, like articulatory gestures. Ultrasound offers 
the opportunity to observe and analyze these gestures and also allows for the observation 
and analysis of tongue articulations in detail. An advantage of ultrasound over other 
tongue imaging techniques (e.g., electropalatography, electromagnetic midsagittal 
articulography, and X-ray microbeam) is that a great length of the tongue contour can 
be imaged (Davidson, 2006). It is widely used to measure an extensive mid-sagittal 
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section of the tongue, allowing measurements of the tongue surface from most anterior 
to most posterior sections by examining upward and downward movements. The only 
limitation of ultrasound imaging is mainly on the most anterior portions of the tongue, 
such as maximum constriction on dental segments and in some cases, advanced alveolar 
realizations (Gonzalez, 2015). Mid-sagittal sections allow measuring three main parts of 
the tongue, namely, the front part of the tongue, the body, and the dorsal section.

Ultrasound tongue imaging has traditionally been analyzed using either static or 
dynamic approaches. One of the main techniques in static approaches is the comparison 
of tongue contours at specific articulatory landmarks (Alwabari, 2019; N. R. Miller et 
al., 2019; Oakley, 2019; Roon & Whalen, 2019). An advantage of this approach is that it 
allows for the comparison of gestural differences at a specific time of the speech process 
previously established in the study, for example, differences between vowels (Decker & 
Nycz, 2012; Mielke et al., 2017), consonants (Ahn, 2015, 2018; Recasens & Rodríguez, 
2019), or phonological contexts (Davidson, 2006; Diskin et al., 2019). On the other hand, 
depending on the research questions to be addressed, dynamic approaches can capture 
time-series characteristics which can be crucial for identifying distinctions between 
segments that in a static approach may not be observed. Dynamic approaches can therefore 
be used to study the kinetics of speech sounds (Kochetov, Faytak, & Nara, 2019; S. R. Li 
et al., 2019; A. Miller & Finch, 2011). One main advantage of this approach is that it can 
measure articulatory data in an articulatory continuum. Data for this approach generally 
require more preparation than in static approaches, which makes it computationally more 
expensive and time consuming, depending on the workflow chosen.

1.1. The general workflow of ultrasound studies
The workflow within an ultrasound study varies depending on many factors, mainly of 
the research questions and the resources available for the study. However, the process of 
ultrasound analysis can generally be broken down into five main stages: data collection, 
contour extraction,1 data wrangling, visualization, and analysis.2 At every stage, there are 
important challenges for any researcher, and here I comment on key challenges that the 
present study aims to address. It is important to note that these stages are not necessarily 
sequential, since in some cases they can happen simultaneously. During data collection, 
one important question is the quality of the data and the frame rate at which contours 
are imaged. A low frame rate poses the challenge of missing key articulatory landmarks, 
depending on the phonological phenomena analyzed. For example, for trills, a high frame 
rate is required to capture more accurate gestural timing, as in Proctor (2009). However, 
for other phonological phenomena, such as vowels, a lower frame rate can be used. The 
challenge of high frame rates is that they can be computationally too expensive, and not 
knowing the optimal rate in advance can result in frame rates that are higher than necessary 
(meaning that the resource cost exceeds the benefit of having a higher frame rate). The 
second stage is contour extraction. Researchers make use of many available computer 
programs such as EdgeTrack (M. Li, Kambhamettu, & Stone, 2005) and the Articulate 
Assistant Advanced (AAA) software (Wrench, 2012), which are used for semi-automatic 
extraction of tongue contours. For an expanded review on different methods and studies 
and a new approach for fully automated extractions, see Karimi, Menard, and Laporte 
(2019). These programs are not 100% accurate and a manual correction stage is part of 
the process. The third stage is data wrangling, when the data is prepared for analysis. 
Among the programming languages used for wrangling, R is widely used (cf. Davidson, 

 1 In some studies, tongue contours are not extracted but rather the whole images are analyzed, as in Mielke 
et al. (2017).

 2 For a detailed description of specific aspects in ultrasound studies see Stone (2005).
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2006; Decker & Nycz, 2012; Lin, Beddor, & Coetzee, 2014; Pini, Spreafico, Vantini, & 
Vietti, 2019; Recasens & Rodríguez, 2019). Developing tools using this programming 
language therefore can be beneficial to the research community.

The fourth stage is visualization. The importance of this stage is that it is strongly 
connected to the analysis to be carried out in further stages. This means that the 
visualization is crucial not only to identify patterns in tongue kinematics, but also to 
establish the most appropriate analysis approach and methods. Three key aspects are 
strongly considered in the visualization stage.

1.1.1. Field of View
Field of View is an important parameter for ultrasound analysis. It defines the extent 
of the comparable contours observed on the graphs window at any given moment. It 
is measured as a horizontal angle (angle aperture), which corresponds with the virtual 
image origin of the ultrasound probe. The field of view depends on the articulatory 
phenomena examined. For example, in the case of coronal segments, it is preferable 
that the field capture activity towards the mid and front sections of the tongue. In the 
case of velar segments, it is preferable that the field be more retracted to capture more 
activity towards the back of the tongue. Establishing the field of view is crucial because 
if it is not properly established, there may be key articulations missed in the range 
chosen for observation. It is important to highlight the fact that the field of view must 
be considered before purchasing a machine and transducer since this cannot always 
be changed.

In this paper, I have implemented a functionality for users to specify the range or 
subsection of the original Field of View. To distinguish the internal capability of the app 
from the field of view, I refer to this as the Analysis Fan View (hereafter AFV). This refers 
to the sections from the original tongue contours that the user chooses to focus on. For this 
purpose, the angle origin in the AFV is created based on the tongue contours uploaded in 
the app, which does not directly correspond with the angle origin from the surface of the 
probe used in the data collection. This is developed in more detail in Section 3.3.2.

1.1.2. Landmarks definition
Articulatory landmarks are relevant because they can be used to define the areas in the 
tongue to be analyzed. Tongue ultrasound imaging poses challenges in relation to defining 
articulatory landmarks. Since the tongue moves as a whole unit and there are no hard-
defined sections, as there are in passive articulators (e.g., teeth, alveolar ridge, soft palate), 
landmark definitions are necessary to accurately interpret the dynamics of the tongue 
(c.f. Kier & Smith, 1985; Stone & Murano, 2007). In ultrasound research, landmarks can 
be acoustic and/or articulatory. In the case of acoustic landmarks (cf. Dawson, Tiede, 
& Whalen, 2016; Lawson & Stuart-Smith, 2019; Markó, Bartók, Csapó, Deme, & Gráczi, 
2019; Mizoguchi, Tiede, & Whalen, 2019; Zharkova, 2013), acoustic cues are the bases for 
defining moments during the articulatory process, for example, the acoustic time of the 
mid-point of a vowel (Mielke et al., 2017) or the maximum constriction of a consonant 
located at the mid-point of its duration. On the other hand, articulatory landmarks are 
defined by the gestural behaviour of the segment. For example, the constriction location 
in low front vowels is located at the still frame showing the most retracted tongue contour 
on the tongue dorsum (as in Decker & Nycz, 2012), and the maximum constriction of a 
velar stop is located at the frame showing the most raised tongue body during stop closure 
(as in Davidson, 2006). These two approaches for landmark definition are not mutually 
exclusive. It is common practice in the field to use mixed approaches in which both 
acoustic and articulatory cues are considered.
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1.1.3. Articulatory landmarks for analysis
The articulatory moment(s), or the time frame, is another important parameter and it 
refers to the dynamic windows for analysis, for example, analyzing transitions between a 
vowel and the maximum constriction of the following consonant. In static approaches, the 
time window is just one screenshot at a given moment, e.g., maximum constriction of a 
consonant or the onset of a vowel. The definition of these articulatory landmarks strongly 
depends on the phonological phenomena observed and the questions to be answered. In 
the case of dynamic studies, the purpose is to measure gestural patterns from point A to 
point B of a given sequence.

The last stage in the ultrasound workflow is the analysis stage. This includes the type 
of measurement and the statistical approaches for analysis—qualitative, quantitative, or 
a combination of both. For example, in static approaches, studies have used Principal 
Component Analysis (Stone, Goldstein, & Zhang, 1997) and Smoothing Splines to compare 
tongue contours and measure differences between segments (Davidson, 2006; Decker & 
Nycz, 2012), and dynamic studies have looked at tongue displacement (Gonzalez, 2015) 
and velocities (Strycharczuk & Scobbie, 2015).

2. Motivation and main purpose
As observed above, there are many factors to be considered for a solid analysis of 
ultrasound data in speech research. This requires strong skills both in linguistic phenomena 
and programming analytical tools. Data analysis is achieved by using a combination of 
different software and scripts built in various programming languages. It is important to 
note that there are standalone programs which can efficiently do ultrasound analysis and 
incorporate different stages simultaneously, for example the Articulate Assistant Advanced 
(AAA) software (Wrench, 2012), which is powerful and of great use. However, these 
programs generally require specialized equipment and they do not tend to be available 
for code expansion/modification based on users’ needs. Two relevant stand-alone R 
libraries have been developed to facilitate data processing from AAA. These are rticulate: 
Ultrasound Tongue Imaging in R (Coretta, 2020) and ultRa (Beare, 2018), which offer a 
range of functions to import and manipulate ultrasound data. In this paper, I introduce 
UVA: Ultrasound Visualization and Analysis, which can be accessed and downloaded from 
https://github.com/simongonzalez/uva. The app implements a wide range of visualization 
parameters and carries out analysis of speech ultrasound data for both static and dynamic 
approaches. The aim is to present users with full control of visualization and analysis 
parameters to carry out efficient analysis of their data. It is a standalone environment 
which can be freely accessible and released as open source. This allows for any further fine-
tuning of the code as well as implementation of new methods by modifying the code. This 
app is targeted at phoneticians analyzing static and dynamic data of tongue ultrasound 
images as well as speech practitioners interested in measuring tongue images for clinical 
purposes. In relation to the different stages of the workflow explained above, the app aims 
to enhance and facilitate mainly stages four (Visualization) and five (Analysis) with a 
tagging functionality for stage three (Data Wrangling). Since it does not offer collection and 
contour extraction, users are assumed to have tongue contours extracted in xy Cartesian 
coordinates, either in pixels and/or millimetres. In Sections 3 and 4, I describe in detail 
the app architecture and present a small sample study.

3. App architecture
The app implements both static and dynamic approaches from Gonzalez (2015) in a single 
program. The code used in the app was developed using open-source tools, combining 
the analytical capacities of the R environment (R Core Team, 2018) and the web-app 
capabilities of the Shiny library (Chang, Cheng, Allaire, Xie, & McPherson, 2019), which 

https://github.com/simongonzalez/uva
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is used for the creation of java-based web applications. The motivation is that R is a 
programming language widely used for speech analysis and Shiny allows the creation 
of apps that can have both the cutting-edge interactive interfaces and the power of the 
programming language analysis. The strength of the Shiny application framework is that 
it is intrinsically reactive in its programming. This means that it links input and output 
data and updates to the outputs (figures and tables) without refreshing the program or 
uploading new data, hence reacting to users’ actions on the interface. All the programming 
actions in the background are translated as visual and graphic outputs at the front end, such 
as click-on buttons, sliders, drop-down menus. This allows users to explore data in more 
efficient and sophisticated ways without requiring ample knowledge of R programming. 
Users are only required to have basic knowledge of R such as opening and running apps.

For the proper working of the app, the input data must meet specific requirements. 
First of all, the number of individual points for each contour must start with 1 and end 
in 100. This is relevant specially for AAA users in which tongue contours do not always 
start with 1 but can start in higher numbers depending on the gridline capturing that 
point. Secondly, the app has been optimized to work with cartesian data. For future 
stages, I aim to implement compatibility with polar coordinates (cf. Heyne & Derrick, 
2015; Mielke, 2015).

In terms of the output data, the app automatically exports wrangled tongue contours 
with corresponding gridlines in a working folder labelled workingFiles, located within the 
main directory. All plots can be downloaded from the app in six formats: bmp, jpeg, pdf, 
png, svg, and tiff. For these images, users can change the width and height of the files.

The app requires a specific structure of the data, which can be structured in four levels 
as shown in Figure 1.

First, we have the Speaker level. It is a requirement to have at least one speaker in 
the data, this is, the data cannot have frames or sequences without being assigned to a 
speaker. In this sense, the speaker level is the overarching class in the data. The second 
level is the Segment. The data needs at least two segments to compare. It can be either two 
consonants or two vowels, or one segment in different conditions, for example, consonant 
/t/ in final and non-final position. The app requires each of these segments to have at least 
two repetitions to be analyzed, which is the third level. Segments may or may not have the 
same number of repetitions. For example, segment A has three repetitions and segment 
B has four repetitions. The app accounts for this difference using intrinsic and extrinsic 
criteria (See Figure 2). If it is intrinsic, only the same number of repetitions are taken 
into account. As in the example, only three repetitions per segment are analyzed, and the 
fourth one for segment B is ignored. On the other hand, if the extrinsic is selected, then all 
repetitions are analyzed irrespective of their uneven number of tokens.

The fourth level is the number of frames. This refers to the number of frames per 
repetition for each segment. At least one frame per repetition is needed for the program 
to work properly. Similar to the number of repetitions, frames also follow an intrinsic and 
extrinsic selection. For each frame, the app reads four columns from the input data (See 
Table 1). The first one is the number of the frame (“frame” column). The second one is 
the Cartesian Coordinate to which the measurement value in column “mm” is assigned. 
The “coord” column specifies whether it is the x or y coordinate. The third is the “point” 
column and it specifies the single point in the tongue contour. In the case of contours 

Figure 1: Structure levels for the input data.

Speaker Segment Repe��on Frame 
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extracted from EdgeTrak, each trace had 100 points in the data tested. The fourth column 
read to create the frame is the “mm” column. This column stores the x or y value of the 
point in the contour. For columns repetition, frame, and point, all counts must start with 
1 without any skipping. For instance, the program will not work properly if one segment 
has repetitions 1 and 3 (repetition 2 is missing), or repetitions 2 and 3 (it does not start 
with repetition 1).

3.1. R libraries used
The app uses a range of R libraries for its full functionality. These can be organized in terms 
of their use within the app in six groups. The first group is the libraries used for its creation 
as a java-based application and for the main layout. Two libraries are used for this purpose: 
shiny (Chang et al., 2019) and shinydashboard (Chang & Ribeiro, 2018). The second group 
is used for the data wrangling and this includes pryr (Wickham, 2018) and tidyr (Wickham 
& Henry, 2019). The third one is used for data managing and visualization of tables: DT 
(Xie, Cheng, & Tan, 2019), data.table (Dowle & Srinivasan, 2019) and rhandsontable 
(Owen, 2018). The fourth group of libraries is used for spatial calculations of lines and 
contour intersections: raster (Hijmans, 2019), sp (Pebesma & Bivand, 2005), gss (Gu, 
2020), and rgdal (Bivand, Keitt, & Rowlingson, 2019). The fifth group of libraries is used 
for the main visualization functionality, which includes ggplot2 (Wickham, 2016), ggrepel 
(Slowikowski, 2019), plotly (Sievert, 2018), highcharter (Kunst, 2019), and rAmCharts 
(Thieurmel, Marcelionis, Petit, Salette, & Robert, 2019). The last group of libraries is used 
for the widgets layouts and display colors: shinyjs (Attali, 2018), shinyjqui (Tang, 2019), 
colourpicker (Attali, 2017), shinyBS (Bailey, 2015), RColorBrewer (Neuwirth, 2014), and 
wesanderson (Ram & Wickham, 2018).

3.2. App structure
This section presents the general structure of the app. The app is a single web page 
organized by a navigation bar with all tabs available in one window. This enables going 
back and forward and alternating between different stages in the analysis. The motivation 

Figure 2: Intrinsic and extrinsic criteria for repetitions.

Table 1: Sample data format for the input data showing the first five observations.

speaker segment repetition frame coord point mm

1 s 1 1 x 1 48.15356

1 s 1 1 x 2 48.68272

1 s 1 1 x 3 49.47646

1 s 1 1 x 4 50.00562

1 s 1 1 x 5 50.53478
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is to make the analysis more holistic. Traditionally, wrangling, visualization, and analysis 
are done at separate and distinctive stages. But with this approach, the layout allows for 
switching between the different stages as needed. The app has 12 main sections and they 
can be divided into six subsections: data and overview, visualization, graphics, gridlines, 
analysis, and SSANOVA. For ease of visualization, screenshots of these sections are found 
in the Appendix.

3.2.1. Data and overview
There are five tabs in this section (See Figure 3). First is the Home tab, which shows a 
static logo and general information. The second is the Documentation tab and it offers 
general information on the different parts of the app. The third Load tab is where the 
user loads the data for analysis. The app only reads csv and tab-separated files. The data 
has to be previously wrangled from the specific source software so it can be read in. The 
fourth one is the Data tab. It shows the data imported in a table giving information on 
the number of speakers, segments, repetitions, and frames. The fifth tab is Manage Data. 
Different from the Data tab, in the Manage Data tab users can edit the data within the 
app. Here, the user has three options: delete, modify, and compare. In the delete option, 
users can delete one or more frames, repetitions, and speakers. The second option is the 
modify option, which can be used to relabel speaker names, segments, or repetition labels. 
The compare option makes comparisons of tongue contours of the selected rows. This is 
relevant when some data is being considered for deletion; having the option to visualize 
it beforehand is very important.

3.2.2. Visualization
The visualization section has three parts: Data inspection, Landmarks, and In context. The 
first one is the Data inspection tab. Here users can explore all the data imported by allowing 
extensive interactions with all contours using the widgets available. This section as well 
as all tabs that visualize data have the structure as shown in Figure 3. The main controls 
on the plotted data are located on the left pane. This includes speakers, repetitions, and 
frames, as well as an option to save the current plot. The main plot is located on the top-

Figure 3: Structure of the main visualization tab.
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right section. All the changes applied on the left controls are automatically updated on 
this main plot. Here, the visualization is done in individial speakers, that is, no speakers 
can be compared in the same graphics. One important feature in this section is that the 
app enables users to manually set anchor points in the visualization. Anchor points are 
fixed points in the figure which become the origin points from which polar-like lines are 
drawn. This allows for exploring areas that show more articulatory behaviour, which is the 
basis of the visualization and analysis approach of the app. After setting the anchor point, 
a second point is created by the user to create a line. The algorithm then automatically 
calculates distances based on the intersections between tongue contours and the line 
created. The app gives xy coordinates for each intersection. It also gives the angles to the 
left and to the right, which can be used to inspect articulatory advancement or retraction 
of specific segments based on angle differences (Proctor, 2009). The overlaid features are 
located on the bottom right. These are extra options to inspect the location of the point of 
origin and the option to manipulate the behaviour of other features such as lines, points, 
and labels.

The next visualization tab is Landmarks. This section allows for creating labels for 
articulatory landmarks to be analyzed in the data. These landmarks are not automatically 
created but instead they are manually established by the users. It can range from one 
single landmark to multiple landmarks. Users also have the option to modify the labels 
of the landmarks once these have been created. Landmark definition is not required for 
the visualization functionality of the app. However, they are required, as well as their 
assignation, for the dynamic analysis functionality.

The next tab is the In Context tab. This section assigns contours to the pre-established 
articulatory landmarks. This is a tagging capability of the app. Similar to the Data inspection 
tab, users can create lines with anchor points. One difference is that only one token with 
its corresponding repetition can be visualized, this is, no multiple repetitions are allowed 
in the same plot. The purpose is to establish the context in which each contour is located, 
allowing the user to see the previous and following contour(s). In the case of consonants, 
this allows for specification of the frame that contains the maximum constriction, which 
is defined as the frame where the constriction is held and then returns to a lower/resting 
position. Users can define the number of frames in context to be visualized.

3.2.3. Graphics
The Graphics tab gives extensive manipulation options to users. Users can edit the graphics 
of tongue contours, the palate trace, and the text on the images. For tongue contours and 
the palate trace, options include line colour, line thickness, alpha value, the smoothness 
level, and the line type. The last option is to modify the text in the plots. It includes font 
type, font size, and colour of the axis labels, axis ticks, and legend. The settings modified 
in this section automatically apply to plots in the tabs Data Inspection, Landmarks, and 
In Context.

In relation to the smoothness parameter, this is only used within the app for visualization 
purposes. The smoothness is therefore used for the front end to smooth tongue contours in 
the plots. This does not affect the calculations of the intersections as explained in Section 
3.3. For the visualization, users can change the smoothness method of contours in the 
Graphics section. The methods implemented are gam and loess, as they are available in 
the ggplot2 (Wickham, 2016) R package.

3.2.4. Gridlines
The Gridlines tab is a foundational section in the app (this section is expanded in Section 
3.3). This section is used to establish all gridlines in the data. This can be done on one 
or multiple segments at a time. The first step is to define the location of the origin point. 
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The first option is the manual option where the user defines where the best location is 
by clicking on the image. The other two options are for automatic location of the origin 
point, which is described in more detail in Section 3.3.1. The first option is the Wide 
setting. It defines the origin point considering the most anterior initial point and the 
most posterior last point of contours. On the other hand, the Narrow option considers 
the most posterior initial point and the most anterior last point. The following step after 
establishing the origin point is the definition of the analysis fan view, which establishes 
the range of comparison across contours. There are four options. The first three are the 
same as in the origin point, Manual, Narrow, and Wide. The extra option is the Angle 
option. It allows the user to define the analysis fan view based on angle degrees for the 
angle aperture. Once the field-view is established, the user defines the number of gridlines 
of the fan. The two options are by number and by angle. If chosen by numbers, the user 
selects the number of gridlines. If by angle, the user decides to choose the location of the 
grid lines by angle increments.

3.2.5. Analysis
The last tab is Analysis. In this section, the user has the opportunity to examine the data 
established in the previous sections. It is based on the intersections calculated in the 
Gridlines tab and with the landmarks created in the Landmarks tab and tagged in the In 
Context tab. Following the same layout structure as in the previous sections, the main 
controls are on the left and the main plot is at the top-right. The main difference is that 
there is an extra visualization at the bottom right that shows the dynamic differences 
between the contours selected. The four options are displacement, distance, velocity, and 
acceleration, which are explained in Section 3.3.4.

3.3. Analysis baseline
The analysis baseline is centred on a gridlines approach developed in Gonzalez (2015), 
which is similar to the one used in AAA (Wrench, 2012) and other studies (cf. Liker, 
Zorić, Zharkova, & Gibbon, 2019; Strycharczuk & Scobbie, 2015). These gridlines are a 
composition of multiple lines with the same origin point and projected in different angles 
to create a grid-like analysis fan view. The location of the gridlines can be determined 
purely on data-internal events, this is, not based on anatomical parameters but on 
contour behaviour. The gridlines origin is fixed for each participant. The use of gridlines 

Figure 4: Layout of the Analysis tab.
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is implemented to capture articulatory activity at different locations in tongue ultrasound 
images as well as to measure gestures in specified articulatory locations. The measurement 
values are defined from the intersection points between gridlines and tongue contours. 
Since the gridlines are fixed for all realizations of a given speaker, all the differences can 
therefore be interpreted as pertaining to differences in the articulatory patterns shown in 
the tongue contours.

This type of approach allows analysis of data in two dimensions. The first is the 
kinaesthetic dimension, which examines the data from static (e.g., comparing the 
maximum constriction points in two different segments, as observed in Figure 4) and 
dynamic perspectives (e.g., comparing how two contours change across time). The second 
dimension is the location of the articulatory activity, this is, analyzing contours either at 
a general level (e.g., comparing the articulatory activity between two segments along the 
full length of their surfaces), or at a specific level (e.g., comparing articulatory activity 
between two segments only in the tongue body section). This gridline approach can be 
used to carry out three types of analysis in ultrasound studies: temporal, spatial, and 
spatial-temporal. Temporal analyses measure time differences in the articulation between 
contours, for instance, which segment takes less time to reach its maximum constriction 
point. For the spatial analysis, the program can carry out spatial differences between 
contours, for example, the tongue movement from a lower position to a higher position 
in the vocal tract as done by displacement analyses. And the last one, spatial-temporal, 
carries out velocity and acceleration measurements to compare segments of interest in 
either whole full trajectories or isolated areas of the tongue across time. The following 
sections describe the three most important components of the gridlines analysis: the origin 
point, the analysis fan view, and the intersections.

3.3.1. Gridlines origin location
The definition of the gridlines origin location can be done manually or automatically. 
The first option allows the user to locate the origin point manually by clicking on the 
desired location within the plot. The second is the automatic option. In this case there 
are two further options, selection of either a narrow window or a wide window. In the 
Wide option, the x value of the midpoint is located between the extreme points: the most 
advanced point and the most retracted point of tongue contours, as shown in Figure 5. 
For the Narrow option, the x value is calculated between the most retracted first point and 
the most advanced last point of tongue contours.

Figure 5: Definition of the x value of the Origin Point.
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The y value is calculated by first extracting the highest y value of all contours and the 
lowest y value of all contours, as shown as the highest and lowest points in Figure 6. Then 
the final y value is calculated by subtracting the highest y value from the lowest y value.

3.3.2. Analysis Fan View
After the gridlines origin has been created, the next step is to define the Analysis Fan View 
(AFV), which establishes how much of each tongue contour is included in the analysis for 
comparison. A wider AFV can capture more articulatory activity at different sections of 
the tongue. However, if it is too wide, it risks having sections where not all contours are 
comparable due to tokens which are missing intersections in specific areas. On the other 
hand, a narrow AFV can be used to isolate areas of interest and analysis. The risk is that if 
looking at a very narrow AFV, the analysis may lose important articulatory activity that is 
outside the range. The trade-off between the two therefore has to be kept in mind by the 
researcher. The other sections of the app, especially Data Inspection and In Context, allow 
users to inspect areas of interest before deciding the AFV for analysis.

Similar to the gridlines origin, the AFV can be established manually or automatically. 
For the manual option, the user can choose the anterior and posterior lines manually 
by clicking on the plot or specifying the aperture angle for each of them. In the case of 
automatic options, it can be narrow or wide. These two depend on the angle aperture 
(See Figure 7 for reference). In the case of the wide option, the left line is located at the 
intersection point with the widest angle. The right line is located at the intersection point 
with the narrowest angle. The main strength of this option is that is captures all contours 
across their length.

Figure 6: Definition of the y value of the Origin Point.

Figure 7: creating the Analysis Fan View.
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The narrow option creates an AFV that captures only the sections that are within the 
common area. There are two stages to calculate the second point for each line. For the 
left line, the algorithm calculates the angle between the origin point and the last point of 
each contour. It first starts with the widest angle and for each iteration it checks whether 
the projected line intersects with all contours. If the projected line does not intersect with 
all contours, the following angle is selected. The process stops when the line intersects 
with all contours in the data. The same process is applied to find the right line, but in this 
case, it starts from the narrowest angle and iterates until finding a line that intersects with 
all tongue contours. The result is then an angle aperture which captures a section that 
is common in all the data. As shown in the triangle in Figure 7, there is a common area 
which captures all contours that stay within the AFV. The areas at the left and the right 
outside the common area are not considered in the analysis.

3.3.3. Gridlines definition
When the AFV is established, the next step is the number of gridlines, which is decided 
based on either a selected number of gridlines or angle increments. In the first option, the 
user defines a specific number of gridlines and the algorithm divides the angle aperture of 
the AFV by the number of lines specified. For the angle option, the user defines the angle 
step increment. Then the lines are added by the angle step increment, starting from the 
right line and adding new lines until reaching the maximum angle within the field view 
aperture. In both cases, the result is a fan-like view of gridlines superimposed on all tongue 
contours. This allows extraction of tongue contours based on intersections between traces 
and gridlines. Figure 8 shows the resulting gridlines with their corresponding angles in 
a sample data.

3.3.4. Intersection calculations
The following step is the intersection points. After all gridlines have been established, all 
intersections are calculated for all contours. The result is a new data frame with the same 
number of tongue contours but narrowed down to the intersection points within the AFV. 
This new data is the baseline for the analysis within the app. The app can analyze dynamic 
patterns in four ways: displacement, distance, velocity, and acceleration, which are key 
when examining tongue motion. In this context, tongue motion is defined as the change of 
a tongue section within the mouth in respect to time (how fast the tongue is moving). One 
parameter is displacement, which is the length of the path traveled by the tongue section 
from one landmark to another, based on a specific gridline. It is important to point out 
that this displacement is a relative measure from one tongue contour to another. Different 
from EMA techniques, which track tongue flesh points, the displacement calculated here 
can only measure the relative movement from point A to point B in a given gridline. It 
is represented in Figure 9 and calculated using Formula 1 where dLMB is the distance 
from the origin point to the intersection with a tongue contour in the second articulatory 

Figure 8: Final Gridlines in the data, Wide option at the left and narrow option at the right.
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landmark and dLMA is the distance from the origin point to the intersection with a tongue 
contour in the first articulatory landmark.

It first calculates the distances from the origin point to the intersections of the first 
landmark contours at a given gridline. For example, the displacement of the tongue from 
the midpoint of a vowel to the maximum constriction of a following consonant on the 
5th gridline. The displacement can therefore be positive, negative, or zero. Displacement 
in this framework is defined as the movement of the tongue in specific locations, which 
are determined by the gridlines. For each line, the displacement in mm or pixels is the 
distance from the first tongue contour of comparison (Intersection A in Figure 9) to 
the next articulatory moment (Intersection B in Figure 9) to capture more fined-tuned 
articulatory patterns.

The second dynamic analysis is distance. It calculates all the space the tongue has 
covered throughout its trajectory from the first landmark to the second landmark. 
Figure 10 depicts this difference. On the left, there are three tongue intersections and 
they ascend in the gridline from the first intersection to the third, both landmarks. On 
the right, there are four tongue intersections. One difference is that from the first to the 
second, there is a downward movement, then it ascends to the third and finally to the 
fourth. As shown here, if we consider only landmark displacement, they have the same 
value. However, the distances for each token differ, since the example at the right has a 
transition contour intersection that adds more distance to the trajectory. This difference 
between displacement and distance is important when considering multiple contours in 
the trajectory between articulatory landmarks. This is also implemented in the app.

Velocity, the third dynamic analysis, measures the speed of a section of the tongue in 
a specified gridline (how fast the displacement is in relation to time). In Strycharczuk 
and Scobbie (2015), tongue contour velocity is measured based on upward or downward 
movements along lines placed on a fan-like shape. This measurement is also implemented 

Formula 1: Displacement formula.

LMB LMAd d d 

Figure 9: Displacement calculation between landmarks.
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here and is calculated following Formula 2, where t represents time calculated by 
multiplying the number of frames between the first and second landmark by the frame rate 
of the ultrasound images (e.g., 30 fps are 0.033 seconds per frame-to-frame transition).

The last metric, acceleration, measures changes in the velocity of that section, with 
respect to time, using Formula 3.

Both velocity and acceleration are based on tongue displacement: Velocity measures the 
rate of change of tongue displacement and acceleration measures the rate of change of 
the velocity. One important aspect of interpreting positive and negative values is that it 
depends on the measurement analyzed. In the case of displacement, distance, and velocity, 
negative values represent negative motion in relation to the baseline of comparison, 
which in this case is the first articulatory landmark. This reflects the directionality in the 
specified gridline. In the case of acceleration, it depends on the velocity. Since acceleration 
measures changes in velocity, negative acceleration takes place when there is slowing 
motion from one frame to another. In these terms, the first initial acceleration, from the 
first landmark contour to the next frame, the acceleration is positive. Then the following 
values can be positive or negative, depending on whether velocity slows down in frame 
sequences. This allows measuring a very important aspect of tongue articulations not 
observed at the spatial level but on a spatial-temporal dimension.

3.4. Comparing multiple segments with dynamic metrics
The tongue displacement/distance analyses examine spatial trajectories along the whole 
analysis fan view and the velocity/acceleration analyses look at this displacement across 
time. The purpose is to capture patterns of tongue gestures along extended or isolated 
sections of the tongue. Multiple time windows are required for this analysis, with at least 

Figure 10: Difference between Displacement and Distance.

Formula 2: Velocity formula.

LMB LMAd dv t




Formula 3: Acceleration formula.

2
LMB LMAd da

t



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two landmarks for comparison. In the example below, I present displacement between 
three articulatory landmarks, namely, Previous Vowel (PV), Maximum Constriction (MC) 
of an obstruent consonant, and Following Vowel (FV), in the case of a VCV sequence. 
There are therefore two transitions, one from PV to MC (PV-MC), and another from MC 
to FV (MC-FV).

The analysis takes the distance intersections of the first moment as the baseline for 
comparison. In the case of the PV-MC displacements, the distance between the origin 
point and the PV intersections are the baseline. The baseline for the MC-FV displacement 
is the distance intersections for MC. These baseline distance intersections are compared 
to the distance intersections of the second moment. Figure 11a and Figure 11b show 
both moments. Point 1.1 in a shows the baseline intersection, which is the intersection 
in PV. The first distance calculated is the distance from the origin to the 1.1 intersection. 
The second distance calculated is from the origin to the 1.2 intersection. The origin-PV 
distance is compared to the origin-MC distance. Then the difference is calculated, which 
is the displacement distance in the given gridline.3

In addition to the displacement distance, the analysis also examines the orientation of 
the displacement. If the distance in a gridline is longer for PV and shorter for MC, then 
it is classified as a negative displacement (as seen on the difference between point 40.1 
and 40.2 on a). On the contrary, if the distance from the origin to the MC intersection is 
longer than the PV intersection, then it is classified as positive displacement (as seen on 
the difference between point 1.1 and 1.2 on a). This type of analysis allows measuring 
the directionality of sections of the tongue for achieving its articulatory target. After the 
displacement is calculated for each contour, the result is a displacement graph across all 
gridlines, as represented in Figure 12.

 3 Figure 11 presents the palate trace contour. This version of the app does not have the capability to measure 
distances from tongue contours to palate traces. However, this is a feature that I am planning to implement 
in future versions.

Figure 11: Positive and negative Displacements representations.3

Figure 12: representation of a displacement graph.
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The comparison between segments can then be achieved with the displacement graph 
approach. Figure 13 represents the process of comparison. In a and b, displacements 
are calculated for each segment. As an example, Segment A displacement shows strong 
positive activity at the body and back sections of the tongue, whereas there is negative 
activity in the front section, but less than the positive displacement. On the other hand, 
Segment B does not display as much activity at the back of the tongue compared to 
Segment A and with little positive displacement at the first gridlines. When these are 
compared on the superimposed figure in c, the displacement shows two main distinctive 
differences. At the front section of the tongue, Segment B has positive displacement 
whereas Segment A shows negative movement. At the back section, even though both 
show positive displacement, Segment A shows more movement than Segment B. These 
differences can be assessed qualitatively as well as quantitatively.

3.5. Smoothing splines analysis of variance
The app offers a functionality to analyze tongue contours using the Smoothing Splines 
Analysis of Variance (henceforth SSANOVA) approach. This section is implemented 
following the procedure developed in Davidson (2006) and Mielke (2015). In this 
section, the first step is to fit the data using smoothing splines by fitting a polynomial 
function connecting the tongue contour points. This type of approach allows the user 
to measure multiple whole contour trajectories and analyze how repetitions of different 
sound segments compare to each other. When using SSANOVAs, the common practice 
when comparing tongue contours is to examine the Bayesian confidence intervals that are 
constructed from the multiple repetitions. If the confidence intervals of the two compared 
groups overlap, then this section is described as not having significant differences. On the 
other hand, when there is no overlap in the confidence intervals, then this section shows 
significant differences between the groups.

The advantage of this approach is that it allows users to examine tongue contours 
not as a whole, but to focus only on the specific areas that display differences between 
groups. This type of approach is in line with the nature of the tongue, which can display 
articulatory similarities between segments in one section but not in another. Therefore, 
by implementing SSANOVAs, the app offers another analysis tool to examine significant 
differences both visually and statistically sound.

Figure 13: representation of displacement comparisons between two segments.
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In this section of the app, see Figure 14, the user selects the speaker and the two 
groups to compare. In Figure 14, the user compares all the repetitions for /s/ with all the 
repetitions for /ʃ/. There are three outputs, namely, the individual contours, the overall 
comparisons, and the confidence intervals. All of these, along with the numeric data, can 
be downloaded using the corresponding graphical user interfaces.

For the individual contours, as observed in Figure 15, all raw tongue contours are 
plotted. This helps to inspect the input data which is then used in the analysis.

For the overall comparison, the splines from the analysis are displayed (see Figure 16). 
These show the best fit for each group as well as the confidence intervals across the length 
of the trajectories.

Figure 14: SSAnOVA tab options.

Figure 15: First visual output in the SSAnOVA analysis. this shows the individual contours in each 
group.

Figure 16: Second visual output displaying the smoothed splines for each group.
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The last tab shows the Bayesian confidence intervals for each group. The horizontal 
dashed line at 0 represents the baseline to identify whether areas along the trajectories 
are significantly different (see Figure 17). The areas where trajectories touch the 0 line 
represent sections that are not significantly different, for example, the cross-sections right 
at the beginning and end of both panels and around 20% in from left to right. The other 
non-overlapping sections are significantly different between the groups. This shows that 
the area around 60% into the trajectories is the area with most significant differences. 
This section corresponds to the tongue body differences between /s/ and /ʃ/. The fact that 
/ʃ/ is lower than /s/ is an artefact of the pixel measurement, which is inverted: Lower 
values correspond to higher positions of the tongue.

These three visual aids, along with the numeric output, give users a powerful analysis 
tool that can be used for effective tongue contour analysis. In this way, the widely used 
SSANOVA approach can also be used in the app.

4. Demonstration study
In this section, I present a sample test from a subset of the data obtained in Gonzalez (2015). 
For demonstration purposes, I only illustrate two segments (/s/ and /ʃ/ in English) from one 
speaker. Each segment has five repetitions and they appear in the carrier sentence, Please 
utter X publicly, where X is the carrier word, sack (for /s/) and shack (for /ʃ/). Each token 
appears between two vowels, /ə/ and /æ/. Figure 18 shows all the tokens and the gridlines 
established with the Narrow option to only focus on the common area of all contours. Two 
articulatory landmarks were established, Previous Vowel and Maximum Constriction with 
20 gridlines. All results shown below are based on the intersections from the gridlines.

Figure 17: third visual output showing the Bayesian confidence Intervals for each group.

Figure 18: Sample data tokens and gridlines.
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One hypothesis tested is that for PV-MC transitions the palato-alveolar segment /ʃ/ 
shows more positive displacement of the middle section of the tongue when compared to 
alveolar /s/, which is hypothesized to show positive displacement at the most advanced 
sections of the tongue to achieve the MC at the alveolar region. The analysis does not only 
focus on positive displacement patterns but also on negative displacements. Figure 19 
shows the raw plots of both segments at the MC point, /s/ shown with the solid line and 
/ʃ/ shown with the dashed line. The first observation is that there is more raising of /ʃ/ at 
the tongue body. This shows that the main difference between /s/ and /ʃ/ is that /ʃ/ has 
more articulatory activity at the body apex. There are no strongly distinctive differences 
at the front section of the tongue.

I added another type of visualization which uses heatmaps to observe articulatory 
activity. This is available in the Analysis tab. The MC heatmaps of /s/ and /ʃ/ are shown 
in Figure 20. The darker the area, the more activity there is at that specific location. 
As observed in the comparison, both have strong activity at the tongue body apex. The 
difference is that /ʃ/ shows more localized activity at that section, whereas /s/ also has 
more activity spreading mainly at the front section of the tongue. The heatmap visualization 
then adds another perspective for analyzing articulatory activity.

Figure 19: raw tongue contours from the gridlines intersections.

Figure 20: Heatmaps during Mc across all five repetitions.
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The next step is to inspect each segment individually to observe displacement differences. 
First, I inspect /ʃ/ in Figure 21. In the left I see all the five tokens at two landmarks; the 
solid lines are the MC contours and the dashed lines are the PV contours. The hue of the 
contours represents the repetition number: Darker hues are earlier repetitions. On the 
right, all repetitions per landmark have been grouped, which shows the same pattern as 
the individual tokens: MC tokens are raised and more advanced at the tongue body apex 
than the PV contours.

The patterns for /s/ are different (See Figure 22), with the individual tokens at the 
left and the grouped ones at the right. The patterns observed in /s/ differ in that there is 
lowering at the body apex from PV to MC. There is also lowering at the front section of the 
tongue from PV to MC. Finally, another difference is that the lowest section of the tongue 
at the tongue back shows less movement for /s/ than for /ʃ/.

Figure 23 presents the heatmap transitions from PV to MC, which show more local 
differences. As observed in the contour plots, activity at the body apex is distinctive, 
with /ʃ/ having more raised and advanced articulations. In the case of /s/, there is more 
significant gestural movement at the front section of the tongue than for /ʃ/. This reflects 
the expected behaviour for /s/: Since its MC is achieved at the alveolar ridge, it shows 
more activity at the very front sections of the contours. In the case of /ʃ/, more activity 
is expected at the body apex, which is the section of the tongue to achieve the MC by 
approaching the palato-alveolar region.

Figure 21: contour differences from PV to Mc for /ʃ/. Shaded areas in the right plot represent 
confidence intervals.

Figure 22: contour differences from PV to Mc for /s/.
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The last type of analyses can be used to observe dynamic patterns in a deeper way. First, 
we analyze the velocity patterns of /s/ in red and /ʃ/ in highlighted blue in Figure 24. 
Velocity values are shown across all 20 gridlines and grouped per segment.

The comparison shows four main areas of activity. At the front section, from gridlines 
1 to 3, there are positive velocities for /s/, whereas there are negative velocities for /ʃ/ 
between gridlines 4 and 7. The positive velocities for /ʃ/ that are comparable to /s/ 
are from gridlines 9 and 13. Gridlines 15 to 20 show negative velocities for both. Since 
velocities are closely related to the distances, we can interpret contour movement related 
to the time it takes to achieve the articulatory targets. First, regardless of their positive or 
negative values, larger velocities correspond to those areas where the movement of the 
tongue moves faster from PV to the MC. One key finding here is that both segments show 
the most prominent positive velocities exactly in those areas where the main constriction 
is targeted in the vocal cavity. In the case of /s/, it is at the first gridlines that would 
correspond to the alveolar region, where the MC is expected to take place coming from the 
previous vowel. In the case of /ʃ/, the gridlines with more prominent positive velocities 
correspond to the postalveolar region, where its MC takes place.

Figure 23: Heatmaps from PV to Mc across all repetitions.

Figure 24: Velocity patterns from PV to Mc.
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Acceleration results also show important patterns in Figure 25. As noted above, 
negative acceleration values correspond to transitions where there is slowing down in the 
articulation. Again, acceleration values are grouped across segments throughout the 20 
gridlines with /s/ in red and /ʃ/ in blue.

Similar to velocity results, there is more prominent acceleration at the front section for 
/s/ and in the middle section for /ʃ/. It shows that there is strong extended acceleration 
also at the tongue body, where /ʃ/ achieves its MC. The pattern for /ʃ/ does not show 
strong acceleration at the front section of the tongue, except for gridline 2. Also, 
unlike velocity measurements, acceleration here shows that there is not much activity 
happening at the back section of the tongue, especially for /ʃ/. Finally, this analysis is 
in line with the heatmap plots in Figure 23. Both show that the articulatory activity of 
/s/ is more spread across the vocal cavity, whereas it is more localized for /ʃ/, at the 
middle section. Since the articulation of the palato-alveolar segment requires significant 
movement of the tongue body, energy shown in the acceleration suggests that most of 
the muscle effort is focused on moving the tongue body, leaving the back and front areas 
of the tongue less dynamic. On the other hand, since to achieve its MC /s/ mainly 
requires movement at the front section of the tongue, which has less mass than the 
tongue body, the muscle effort can be spread in other sections of the tongue, that is, not 
putting all the effort into movement of the front section, as it is done in /ʃ/ to move the 
tongue body.

5. Conclusions
Articulatory analysis of speech phenomena has helped us have a better understanding of 
how articulation and gestures function. The use of technologies like ultrasound has been 
of undeniable importance in the field. By developing technologies like the one described 
in this paper, we can expand our study of human articulation, not only in normal speech 
but also in cases of speech impediment and speech development. It is my aim then that 
by implementing this tool, many of the hurdles for efficient tongue ultrasound analysis 
can be overcome so we can tackle new challenges of research. Being an open source tool, 
UVA opens the door to broadening the scope of ultrasound studies by allowing users to 
create new analysis algorithms and then implement them as needed within the app from 
the source code.

Figure 25: Acceleration patterns from PV to Mc.
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