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This paper presents exploratory research on temporally dynamic patterns of vowel nasalization 
from two speakers of Arabana. To derive a dynamic measure of nasality, we use gradient tree 
boosting algorithms to statistically learn the mapping between acoustics and vowel nasality in 
a speaker-specific manner. Three primary findings emerge: (1) NVN contexts exhibit nasalization 
throughout the entirety of the vowel interval, and we propose that a similar co-articulatory 
realization previously acted to resist diachronic change in this environment; (2) anticipatory vowel 
nasalization is nearly as extensive as carryover vowel nasalization, which is contrary to previous 
claims; and (3) the degree of vowel nasalization in word-initial contexts is relatively high, even in 
the #_C environment, suggesting that the ongoing sound change *#ŋa > #a has involved the loss 
of the oral constriction associated with ŋ but not the complete loss of the velum gesture.
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1. Introduction
This paper presents an exploratory study of temporally dynamic patterns of vowel nasalization 
in Arabana, a language of northern South Australia with 15 self-identified speakers according 
to the 2016 Census (Australian Bureau of Statistics, 2016). Our primary research goal is to 
document the synchronic realization of vowel nasality in Arabana, through investigating time-
varying patterns of a statistically derived acoustic metric of vowel nasalization in six different 
phonetic environments as produced by two speakers. We use these synchronic observations 
to focus additionally on which aspects of vowel nasalization may or may not have played a 
significant role in the phonetics and phonology of sound change in Arabana. We consider two 
sound changes in this study: Pre-stopping and initial dropping.

1.1. Pre-stopping
Synchronically, many Australian languages show a pattern called pre-stopping, where a 
phonological sequence consisting of a tonic vowel and a nasal or lateral /ˈV(N,L)/ is realized 
phonetically as [ˈVC[stop](N,L)] (Dixon, 2002, p. 597; Fletcher and Butcher, 2014, pp. 109–
110). While non-contrastive phonetic pre-stopping is common among Australian languages, 
phonologically contrastive pre-stopping is rare, i.e., languages where /ˈV(N,L)/, /ˈVC[stop](N,L)/, 
and /ˈVC[stop]/ all contrast phonologically with one another are infrequent among Australian 
languages. Diachronic analyses agree that, in those cases where contrastive pre-stopping does 
exist, it developed from non-contrastive pre-stopping (Hercus, 1972, 1994, p. 37; Koch, 1997, 
pp. 276–278; McEntee and Butcher, 2021, pp. 39–44; Simpson and Hercus, 2004, pp. 188–189; 
Sommer, 1969, pp. 54–55).

Arabana is of particular interest for research on pre-stopping, because it is one of the few 
Australian languages in which pre-stopping is phonologically contrastive (Harvey et al., 2019); 
examples illustrating the contrast between pre-stopped and plain nasals in Arabana are provided 
in Table 1. The change from phonetically conditioned pre-stopping to phonologically contrastive 
pre-stopped forms is an exhausted sound change in Arabana and is no longer synchronically 
active in the language; the complex and unpredictable distribution of pre-stopped forms suggests 
that the change has indeed been inactive for some time. It should be noted that there is no 
evidence for non-contrastive pre-stopping synchronically in Arabana: Synchronic /#(C)VN/ 
forms do not have optional pre-stopped realizations, e.g., /amaɲi/ ‘grandmother’ can only be 
realized as [amaɲi] and does not have [apmaɲi] as an alternative realization. The change 
operated extensively across the lexicon, but there is one environment where contrastive pre-
stopped forms did not develop. This is in the environment */ˈNVN/, where there is a consistent 
absence of contrastive pre-stopping, i.e., */ˈNVN/ did not develop into /ˈNVC[stop]N/ but continued 
as /ˈNVN/. Consistent absence of contrastive pre-stopped forms in the /ˈNVN/ environment 
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holds for all Australian languages with contrastive pre-stopping: Adnyamathanha (McEntee and 
Butcher, 2021, pp. 32–33), Arabana (Hercus, 1994, pp. 38–39), Arandic languages (Koch, 1997, 
pp. 276–278), Olkola–Oykangand (Sommer, 1969, pp. 54–55).

Koch (1997) suggests that the most probable explanation for the absence of contrastive 
pre-stopping in the /ˈNVN/ environment is that the vowel was fully nasalized when the change 
was taking place elsewhere in the lexicon. Nasalization throughout the vowel is antithetical to 
a pre-stopped [ˈNVC[stop]N] form, which requires a raised velum during the oral stop consonant 
closure in order to generate an increase of intra-oral air pressure. Due to this aerodynamic 
conflict, phonetic pre-stopping would not have occurred in this environment and, subsequently, 
did not develop into a contrastive pre-stopped form. By contrast, in an environment such 
as /ˈ(C)VN/ that did develop contrastive pre-stopping, the hypothesis is that the vowel was 
realized as oral throughout and, therefore, velum height posed no aerodynamic conflict for a 
pre-stopped realization.

A crucial factor in this hypothesis is, therefore, the height of the velum at the right edge 
of the vowel interval in a /(C/N)VN/ environment, where a potential pre-stopped realization 
might arise. In other words, the extent and degree of anticipatory nasalization in Pre-Arabana 
would determine whether or not an aerodynamic conflict might influence the development of 
this particular sound change, whereas carryover nasalization would have posed no particular 
aerodynamic issue.1 Most of the literature on vowel nasalization in Australian languages reports 
evidence for significant carryover nasalization but very limited evidence for anticipatory 
nasalization (Butcher, 1999; Butcher and Loakes, 2008, among others), although there are 
some potential discrepancies. Using dynamic nasal airflow data, Stoakes et al. (2020) show that 
anticipatory vowel nasalization is restricted in Bininj Kunwok both in timing and in magnitude, 
but much less so for pre-/ŋ/ vowels compared to vowels preceding other nasal consonants. Tabain 
et al. (2020) report, however, that there may be acoustic evidence for anticipatory nasalization 

 1 In this respect, it may be noted that laterals did undergo pre-stopping when preceded by a nasal in Arabana, e.g., 
‘nose’ *mil̪a > mit̪l̪a.

Plain nasal Pre-stopped cluster

kamaɳʈali ‘separately’ kapmari ‘sibling-in-law’

jan̪i-ɳʈa ‘speak-Present’ wat̪n̪i-ɳʈa ‘cook-Present’

anari ‘this way’ watna ‘yamstick’

Table 1: Plain and pre-stopped nasal contrast examples in Arabana.
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in Arrernte which may not be obvious to human labellers, and that due to these atypical acoustic 
characteristics the “impression of a lack of vowel nasalization before nasal consonants may not be 
entirely true.” (p. 2748). Indeed, if nasal co-articulation was primarily a carryover phenomenon 
in Pre-Arabana and anticipatory nasalization was limited, then pre-stopping in the */ˈNVN/ 
environment would not necessarily have been impeded since the degree of nasalization would 
have been relatively low toward the end of the vowel interval, i.e., precisely the location where 
a pre-stopped realization might occur. However, the fact that pre-stopping did not occur in the 
/ˈNVN/ environment suggests that the vowel may have been characterized by a high degree of 
nasalization throughout.

1.2. Initial dropping
Initial dropping, where the initial consonant of words is lost, is a common sound change in 
Australian languages (Dixon, 2002, pp. 589–602). The predominant diachronic pattern in 
Australian languages was that only singleton consonants occurred in word- and root-initial 
position historically, whereas both vowels and consonant clusters were largely absent word- and 
root-initially (Dixon, 2002, pp. 553–555). The diachronic reconstruction for Pre-Arabana follows 
the predominant pattern: The historical stage immediately preceding the synchronic Arabana 
that we report here contained only consonants word- and root-initially (Hercus, 1979). However, 
synchronic Arabana differs from Pre-Arabana in that it does have vowel-initial roots and words, 
and these synchronic vowel-initial forms derived from their Pre-Arabana counterparts through 
the process of initial dropping.

There have been two distinct initial dropping changes in Arabana. The first change is the 
reduction of homorganic semivowel-vowel sequences: */#ji/ > /#i/ and */#wu/ > /#u/. 
This sound change has operated exhaustively across the lexicon, i.e., there are no roots with 
initial /#ji/ or /#wu/ in synchronic Arabana, there are only roots with initial /#i/ or /#u/. In 
a vocabulary of 2142 words (Hercus, 1979), 100 (4.7%) have an initial /i/ and 54 (2.5%) have 
an initial /u/. Synchronic roots with initial /a/ did not arise via this same process, however, 
i.e., there were no changes such as */#ja/ > /#a/ or */#wa/ > /#a/. Rather, initial /a/ forms 
came about diachronically through the second initial dropping change, the reduction of a nasal-
vowel sequence: */#ŋa/ > /#a/. This second change differs from the first in that it has not 
operated exhaustively across the lexicon: Synchronically, there is a contrast between */#ŋa/ and 
/#a/ in the lexicon with 93 (4.3%) words having an initial /ŋa/ and 119 (5.5%) words having 
initial /a/ (ibid). Some forms have undergone the */#ŋa/ > /#a/ change since Arabana was 
first recorded in the late 19th century (Helms, 1896; Todd, 1886). For example, ‘yes’ is recorded 
as /ŋaraji/ in the earliest sources, but as /araji/ in later sources (Hercus, 1994, p. 32). The 
*/#ŋa/ > /#a/ change was therefore an actively spreading process when the speakers reported 
in the current paper acquired Arabana as a first language.
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There is no quantitative data on the phonetics of initial dropping as an active process 
from any Australian language. The unexamined assumption is that initial dropping involves 
the loss of all temporal and gestural content relating to the initial segment; in the case of the 
second initial dropping change outlined above, this would imply a loss of all gestural features 
related to the nasal onset /ŋ/. In the current study, we examine forms with an initial /a/ and 
show that these vowels are produced with nasal co-articulation patterns that are between 
those associated with post-oral and post-nasal vowel contexts. In other words, /#a/ forms 
show nasal co-articulation patterns that are intermediate between /#Ca/ and /#Na/ forms. 
We interpret this as an indication of a partial maintenance of the effect of co-articulation (i.e., 
carryover nasalization on the vowel) despite a complete loss of the temporal interval associated 
with the original source of the co-articulation (i.e., the nasal consonant). In this connection, 
it may be noted that the reductions of the homorganic semivowel-vowel sequences, *#ji > 
#i and *#wu > #u, can be analysed as involving loss of temporal content without loss of  
gestural content.2

The overall distribution of nasalization within vowels in Arabana is therefore a particular 
question of interest, since data related to synchronic productions of vowels in nasal environments 
may help clarify these remaining uncertainties about the absence of pre-stopped /ˈNVSN/ forms 
and the gestural nature of initial dropping involving */#ŋa/ > /#a/. However, there is no 
quantitative data on synchronic vowel nasalization in Arabana, data which could provide a 
database for the reconstruction of vowel nasalization and assessment of its potential interactions 
with sound change. The current paper addresses this shortcoming.

2. Arabana phonological structures
Arabana has a three vowel system /i, a, u/, which is unequally distributed across the lexicon 
with /a/ forming a majority class. In a vocabulary of 2142 words, the vowel distribution is 
as follows (Hercus, 1972): /a/ 4214 (57%), /i/ 1732 (24%), /u/ 1419 (19%). Our research 
on Arabana required the use of real word forms, which limits the choice of items that can be 
analyzed due to this unequal distribution. Moreover, given the large range of environments 
under consideration—ˈCVC, ˈNVN, ˈNVC, ˈCVN, #ˈVN, #ˈVC—it was only for the /a/ vowel that 
sufficient data could be collected across the entire range of environments. Given these limitations, 
along with a particular focus on */#ŋa/ > /#a/ initial dropping, we have chosen to analyze 
nasalization in only the vowel /a/ for the purposes of this study. With regard to consonants in 
Arabana, the inventory is set out in Table 2.

 2 We can compare this with another Australian language, Iwaidja, in which consonant lenition has been shown to 
involve the loss of gestural content without a complete loss of temporal content (Shaw et al., 2020).
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In terms of morphological, prosodic, and word structures, Arabana conforms to the following 
general Australian patterns (Baker, 2014):

a) Arabana is a suffixing language, and morphology is largely agglutinative

b) Lexical morphemes are minimally disyllabic

c) There is no minimum size constraint on grammatical morphemes

d) Footing is trochaic

e) Feet are aligned with the left edges of polysyllabic morphemes

f) The head foot is the left-most foot

g) The tonic vowel is always the first vowel in the word. The first vowel may be word-initial 
or it may be preceded by a C onset.

Arabana differs from general Australian patterns in two ways. The first difference is that vowel-
initial lexical roots are not a marginal phenomenon: Out of a vocabulary of 2142 words, 275 
(13%) are vowel-initial (Hercus, 1972). The second difference is in the inventory of heterosyllabic 
clusters.3 Arabana has an inventory of 29 heterosyllabic clusters, and in accordance with general 
Australian patterns, 24 (83%) conform to the Syllable Contact Law (SCL) with the sonority of C1 
being greater than the sonority of C2 (Harvey et al., 2019, p. 447). There are five exceptional 
heterosyllabic clusters which violate the SCL: /p.m/, /t̪.n̪/, /t̪.n̪/, /t.n/, /t.l/. These 
clusters are precisely those that are found in the contrastive pre-stopped forms of synchronic 
Arabana, which arose historically from pre-stopped allophones of plain nasals and laterals.

3. Methods
Detailed information about the methodological choices made for this study, as well as the 
justifications for these choices, are available in the Supplementary Materials.

 3 Arabana, like most Australian languages, does not permit tautosyllabic clusters.

Labial Dental Alveolar Retroflex Palatal Velar

Stop p t̪ t ʈ c k

Nasal m n̪ n ɳ ɲ ŋ

Lateral l̪ l ɭ λ

Tap ɾ

Trill r

Approximant w ɻ j

Table 2: Arabana consonantal inventory.
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3.1. Datasets
The analysis reported here is based on two datasets. Dataset 1 is experimental materials 
recorded from Sydney Strangways, a first-language speaker of Arabana born in 1932. These 
materials were recorded in four field trips between July 2017 and September 2020. Dataset 2 
is audio data from Laurie Stuart, another first-language speaker of Arabana born in 1913, now 
deceased. These audio materials were not recorded under experimental conditions. Rather, 
they were originally recorded to accompany a set of Arabana teaching materials already in 
print (Wilson, 2004). In order to provide comparison data with Dataset 1, we cross-referenced 
both data sets for the same vowel environments. As the audio materials from Dataset 2 were 
produced for pedagogical purposes, however, the prosodic environment of the data varied 
from token to token. Given the difference in age between the two speakers, Laurie acquired 
Arabana as a first language within a larger cohort of speakers than Sydney. Laurie also 
acquired Arabana at an earlier stage in the active spread of the change */#ŋa/ > /#a/ 
across the lexicon.

3.1.1. Stimuli
We searched the Arabana lexicon for words with the following phonetic environments of the 
tonic vowel: ˈCVC, ˈNVN, ˈNVC, ˈCVN, #ˈVC, and #ˈVN. We shortlisted target words based on 
their ease-of-picturability and then trialled photos and illustrations for each target word. To 
prepare the visual elicitation materials, we first randomised the order of target word list, and 
created PDF slideshows where each slide contained a single image illustrating the target word as 
shown below in Figure 1. For each slideshow, we also produced a run sheet containing a table 
of the word list, their unique identifiers, and the English definition. The word list and associated 
metadata are provided in the Supplementary Materials.

Figure 1: Example elicitation materials for two Arabana words, /an̪aku/ “I don’t know” (left, 
#VN environment) and /n̪amarun̪a/ “bereaved person”, (right, #NVN environment).
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3.1.2. Recording
Sydney was recorded by Margaret Carew on one field trip in July 2017 and by the fourth author in 
three field trips between April 2018 and September 2020. In each field trip, the recording site was a 
quiet location. For the 2017 field trip, a Tascam DR-100 audio recorder was used, with a Rode NT4 
stereo microphone. The sample rate was set at 48 kHz with a bit depth at 24 bits per sample. For the 
2018–2020 field trips, recordings were made with a Zoom H5 recorder using its internal microphone.

Prior to a recording session, the speaker reviewed the run sheet, accepting some of the words 
and rejecting a number of words. Rejections were mostly on the basis of incorrect language 
affiliation, e.g., identifying a number of words as belonging to other language varieties such 
as Wangkangurru or Diyari. He proposed correct Arabana replacement words for most of these 
items, matching these to the English meanings provided. In some cases, the speaker corrected the 
word to make it conform to correct Arabana. Throughout these discussions he made a number 
of such substitutions and additions, and also commented on meaning, clarified definitions, 
discussed semantic nuances, and in some cases provided various inflected forms. The result of 
these discussions was a revised list of target words that closely matched the items in the run sheet.

Once the review was complete, the speaker was recorded producing a number of tokens in 
response to the visual stimuli (range: 4–8 tokens, median: 6 tokens). Audio from the recording 
sessions were then annotated in ELAN (Lausberg and Sloetjes, 2009); annotation was carried 
out for the target word, along with replacement and key commentary provided by the speaker. 
Information on all target words is provided in the Supplementary Materials.

3.2. Annotation procedure
For each token in both data sets, we annotated the first vowel along with its neighboring 
consonants. Word-initial vowel environments were included in order to observe patterns related 
to initial dropping, yielding the six vowel environments previously mentioned: /CVC/, /NVN/, 
/NVC/, /CVN/, /#VC/, and /#VN/.4 Annotation was carried out via visual inspection of the audio 
waveform and broadband spectrogram in Praat (Boersma and Weenink, 2021). The boundaries 
between nasals and vowels were determined by waveform amplitude and appearance of formant 
structures particularly in higher frequencies. Nasals have reduced waveform amplitude and 
different formant positions and attenuated formant structures compared with surrounding vowels. 
Stops were identified through a break in formant structures, i.e., closure, followed by turbulence 
in the waveform and a spike in high frequencies in the spectrogram, i.e., bursts. Visual examples of 
annotation boundaries for vowels, nasals, and stops are shown in Figure 2.

 4 It is important to note that contrastively pre-stopped forms, by definition, are those in which the vowel is followed by 
an oral stop. Thus, the environments /#VC/, /CVC/, and /NVC/ in our annotation convention include items which 
were similarly composed of the sequence /(C/N)VC/ in Pre-Arabana, as well as those which arose diachronically 
from phonetically pre-stopped /(C/N)VN/ forms.
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3.3. Analysis
In the absence of physiological measures of nasality, we must infer the degree of nasalization 
acoustically. A traditional approach to estimating the degree of nasalization from vowel acoustics 
is to choose (generally) a single acoustic correlate in an implicit, top-down manner. Acoustic 
correlates that are commonly used as metrics of vowel nasality are A1-P0, A1-P1, or formant 
bandwidths (in particular, F1 bandwidth), due to the general tendency for these features to 
pattern with changes in nasality (Fujimura, 1961; Maeda, 1993; Feng and Castelli, 1996; Chen, 
1997; Stevens, 2000). One issue with this approach is the assumption that the relationship 

Figure 2: Partial waveforms and spectrograms of two Arabana words, 1) /manaɳi/ “perhaps, 
maybe, meanwhile” by Sydney Strangways, and 2) /madla/ “dog” by Laurie Stuart, annotated 
for acoustic landmarks of nasals, vowels and stops.
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between the chosen acoustic correlate and the degree of nasalization is similar across languages 
and speakers. However, single-metric acoustic analyses of vowel nasalization have been shown 
to be inconsistent in their ability to estimate the degree of nasalization in a way that is robust to 
linguistic, inter-speaker, and intra-speaker variation (Styler, 2017), due in part to the complex 
acoustic interactions between the oral and nasal cavities, which can be idiosyncratic and difficult 
to predict accurately and consistently (Carignan, 2018). An alternative approach is to ascertain 
the mapping between acoustic features and the degree of nasalization in an explicit, bottom-up 
manner through speaker-specific statistical learning of acoustic patterns that characterize the 
presence of nasality in the signal. An application of this approach is described in Carignan (2021), 
where the generalized method is referred to as Nasalization from Acoustic Features (NAF). In that 
study, speaker-specific machine learning of the acoustic realization of nasalization was carried 
out using principal components regression. In the current study, we extend the NAF method to 
use gradient-boosted decision trees to learn speaker-specific patterns of the relationship between 
acoustic variation and the height of the velum.

3.3.1. Acoustic features of nasality
The NAF method follows a typical “shotgun” or “kitchen sink” approach to machine learning 
of speech, in which a wide variety of acoustic features is implemented as a set of predictor 
variables; some of the chosen features are assumed specifically to be acoustic correlates of vowel 
nasalization and others are not. By including both types of acoustic features, the aim is to capture 
the presence of nasality through feature engineering based on domain-specific knowledge, while 
at the same time incorporating a degree of flexibility in the pattern learning process of the models.

Eighteen acoustic features of nasality were measured using the Nasality Automeasure Praat 
(Boersma and Weenink, 2021) script created by Will Styler:5 The frequencies, amplitudes, and 
bandwidths of F1-F3; P0 and P1 amplitude; P0 prominence; A1-P0 and A1-P1, as well as their 
formant-compensated analogs (Styler, 2017); A3-P0; and H1-H2. The script was run in “Full-Auto” 
mode with defaults for all parameters. Five additional measurements of broad spectral changes 
were added to these features: The first four spectral moments (center of gravity, variance, skew, 
kurtosis) were measured using the emuR R package (Winkelmann et al., 2021), and a measure of 
nasal murmur—quantified as the ratio of low frequency (0–320 Hz) amplitude to high frequency 
(320–5360 Hz) amplitude (Pruthi and Espy-Wilson, 2004)—was calculated from the decibel-
transformed amplitude spectrum using the signal R package (Ligges et al., 2021). In addition 
to these 23 phonetically-informed acoustic features, 14 Mel-frequency cepstral coefficients 
(MFCCs) were calculated using the tuneR R package (Ligges et al., 2022), representing a set of 

 5 Available at: https://github.com/stylerw/styler_praat_scripts/tree/master/nasality_automeasure. Details about the 
script and its implementations of the acoustic measures of nasality can be found in Styler (2015).

https://github.com/stylerw/styler_praat_scripts/tree/master/nasality_automeasure
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phonetically-uninformed features. Finally, the delta coefficients (i.e., sample-wise differences) of 
these 37 features were computed to capture abrupt temporal change in the acoustics, resulting in 
74 total features to be used in modeling. Each of these 74 features were measured at 11 equidistant 
points throughout the target vowel, thereby normalizing time within the vowel interval.

3.3.2. Data sampling
An important consideration in most machine learning procedures is ensuring that the data used 
for model training is equally distributed across relevant classes, in order to avoid over-fitting of 
the model to only a subset of the data. For the purposes of the current study, the relevant classes 
are the six V environments. However, there is an imbalance in the number of observations across 
these classes for both speakers: A range of 171–450 observations (SD = 123.8) for Laurie and 
a range of 1071–5373 observations (SD = 1631.7) for Sydney. Training a model on these data 
runs the risk of the model primarily learning patterns in the majority class (C_N for Laurie, C_C 
for Sydney) while under-representing patterns in the other classes, in particular the minority 
class (N_N for Laurie, C_N for Sydney). For large data sets, randomly sampling the data so that 
all classes have a number of observations that is equal to the minority class is acceptable, since 
enough data still remains to allow for a properly trained model. For small data sets, such as those 
from extremely low-resource languages like Arabana, as much of the available data that can be 
retained should be retained. Therefore, instead of simply throwing away data through random 
sampling, re-sampling of the acoustic feature sets was carried out in the current study.

In order to re-sample the acoustic features for both speakers we used the procedure available 
at https://github.com/ChristopherCarignan/multivariate-resampling. This procedure re-samples 
the data set to a target number of observations, N, either under-sampling or over-sampling as 
appropriate. The re-sampling was carried out separately for each V environment in a given 
speaker’s data set. For environments that contain more samples than N, N samples were randomly 
selected from the total set (i.e., under-sampling). For environments that contain fewer samples 
than N, new observations were generated (i.e., over-sampling) by creating weighted averages 
of feature vectors of randomly selected nearest neighbors in a multidimensional space. Over-
sampling the data in this way avoids duplication of existing data samples while maintaining 
the general properties of the original data, including the relative distributions of each of the 
individual features. Further details about the re-sampling used, as well as an exploration of the 
effects of the over-sampling procedure on the distribution of the acoustic features, are available 
in the Supplementary Materials.

N was chosen according to different criteria for the two speakers, given the difference in the 
sizes of their respective data sets: For Sydney (whose data set was larger) N was set to the median 
number of samples across the six V environments (1485), and for Laurie (whose data set was 

https://github.com/ChristopherCarignan/multivariate-resampling
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smaller) N was set to the largest number of samples across the six V environments (450), i.e., the 
C_N environment. Thus, after the re-sampling procedure was carried out, the data set for Sydney 
contained exactly 1485 vectors of the 74 acoustic features in each of the six V environments, and 
the data set for Laurie contained exactly 450 vectors of the 74 acoustic features in each of the 
six V environments. The re-sampling procedure was carried out after data associated with the 
boundaries of the vowel interval were excluded, as explained in the following section.

3.3.3. Data selection
One of the propositions of the NAF method is that the statistical learning of orality and nasality 
should be carried out using acoustic features associated with the velum in its closed (i.e., oral) 
and open (i.e., nasal) positions. For the current study, we accomplished this by selecting features 
at time points adjacent to oral consonants and nasal consonants, following the assumption that 
articulatory and aerodynamic requirements constrain the height of the velum at these time 
points. We use the time points shown in Figure 3 to illustrate feature selection in the target 
vowel of the word /kaŋi/ “too much, excessively.” For this token, the time points labelled 
“2” and “10” (i.e., 10% and 90% of the vowel interval, respectively) were used to register oral 
features (point 2) and nasal features (point 10). Using this approach, oral features were selected 
at 10% of the vowel interval in the C_C and C_N environments and at 90% of the vowel interval 
in the C_C, N_C, and #_C environments, while nasal features were selected at 10% of the vowel 

Figure 3: An example of the 11 time points from which acoustic measures were taken across 
each target vowel interval. Shown is a spectrogram of [a] of /kaŋi/ “too much, excessively,” 
with the 11 time points overlaid.
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interval in the N_N and N_C environments and at 90% of the vowel interval in the N_N, C_N, 
and #_N environments. 80% of these samples were randomly selected for model training. The 
remaining 20% of these samples, the features at time point 2 in the word-initial environments, 
and the features at time points 3–9 in all items, were used for model predictions (i.e., generation 
of the final NAF measurements). Time points 1 and 11 (i.e., the absolute boundaries of the vowel 
interval) were excluded from all stages of the analysis with the exception of calculating delta 
features, in order to avoid the most extreme effects of co-articulation on the acoustic signal.

In total, for Laurie’s data, 402 samples were used for model training (80% of 604 total 
samples at time points 2 and 10, with subsequent exclusion of word-initial environments) and 
2298 samples were used to generate NAF predictions (all remaining data, including word-initial 
environments and samples at time points 3–10). For Sydney’s data, 1356 samples were used for 
model training (80% of 2032 total samples at time points 2 and 10, with subsequent exclusion 
of word-initial environments) and 7554 samples were used to generate NAF predictions (all 
remaining data, including word-initial environments and samples at time points 3–10).

3.3.4. NAF predictions using XGBoost
Gradient boosting is a technique for supervised machine learning that builds a prediction network 
as an ensemble of separate weak learner models. In the case where these weak learners are 
decision trees, the algorithm is known as a gradient-boosted decision tree model. XGBoost is an 
open-source implementation of gradient tree boosting that is designed specifically for speed and 
performance, which has recently shown to match or even surpass deep neural networks in many 
applied machine learning competitions, e.g., Kaggle, especially when using data with a relative 
small number of variables (such as the acoustic feature set used here). In the current study, the 
XGBoost R package (Chen et al., 2022) was used to build separate gradient-boosted decision tree 
models for the two Arabana speakers.

As recommended in Carignan (2021), the NAF model was trained using oral and nasal 
observations labelled with numerical values 0 and 1, respectively, and the model was specified 
to minimize linear regression error, rather than as a classification problem. In this way, values 
on a 0–1 scale can be generated directly as response predictions from the trained model and 
these values can be interpreted as a linear mapping along the oral–nasal dimension: Values that 
are halfway between those associated with oral (0) and nasal (1) correspond to a half-degree 
of nasalization (0.5), and so forth, while allowing response values to surpass these bounds if 
appropriate, i.e., negative values are permitted for observations predicted to be especially oral 
and values > 1 are permitted for observations predicted to be especially nasal.

A separate XGBoost model was trained for each speaker. Default values for all hyper-
parameters were used, with the exception of max_depth (the complexity of the ensemble; used 
to control over-fitting), eta (the learning rate of each decision tree; used as a form of shrinkage), 
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gamma (the threshold of loss reduction required to make a decision split), and subsample (the 
proportion of the training samples used to train each decision tree). The values of these four 
hyper-parameters were tuned using 5-fold cross-validation (CV) of the training data in a full grid 
search of the hyper-parameter space. The hyper-parameter values that resulted in the lowest 
average CV error were used to build a subsequent 5-fold CV model to determine the optimal 
number of iterations to run using the tuned parameters. A final model was then built using all 
of the training data, the tuned hyper-parameters, and the optimal number of iterations. This 
model was used to predict response values for the remaining data (see Section 3.3.3), which will 
henceforth be referred to as “NAF values.”6

The resulting NAF values will be assessed both qualitatively and quantitatively in Section 4. 
For qualitative assessment, smoothed averages were created to observe the change in the degree 
of nasalization over the normalized time course of the vowel interval (10%–90%) for each of 
the six environments. For quantitative assessment, the NAF values were used as the dependent 
variable in a linear mixed-effects (LME) model with the vowel environment as a fixed effect 
and random intercepts by speaker;7 the LME model was built using the lme4 R package (Bates 
et al., 2022). Tukey pair-wise contrasts were computed using the multcomp R package (Hothorn 
et al., 2022), with the α level adjusted using the Bonferroni method for maximally conservative 
reduction of Type I error inflation due to performing multiple comparisons.

4. Results
4.1. Qualitative results
The data smooths in Figures 4–6 were created using the ggplot2 R package (Wickham et al., 2021) 
with locally weighted smoothing (“LOESS” smoothing). These smooths display the respective 
means and 95% confidence intervals bands (i.e., standard error of the mean) of the six vowel 
environments, each of which is denoted by a separate color and line style. The pattern for C_C 
is as expected: The NAF values are low throughout the entire vowel interval, suggesting that the 
velum remains raised throughout the vowel. The pattern for N_N is precisely the opposite: The 
NAF values are high throughout the entire vowel interval, suggesting that the velum remains 
lowered throughout the whole vowel. The patterns for the N_C and C_N environments are 
practically mirror images of one another: The degree of nasalization (as inferred from the NAF 
values) decreases in a linear manner throughout the vowel interval in the N_C environment 

 6 It may be helpful to remind the reader at this point that the 10% and 90% vowel interval samples used in the model 
training were not also used in generating the response predictions. This is important for interpreting the resulting 
NAF values, which are indeed unbiased generalizations of the trained model at all time points since none of these 
observations were ever used in training the model in the first place.

 7 A model that incorporated a full random effect structure was unable to converge, even using the bobyqa optimizer 
and increased iterations; see the Supplementary Materials for details.
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and increases in a linear manner throughout the vowel interval in the C_N environment. This 
cline-like linear change is generally characteristic of phonetic (rather than phonological) vowel 
nasalization (Cohn, 1990), and the pattern for the C_N environment suggests not only that 
anticipatory nasalization does indeed occur in Arabana but that it is fairly substantial both in 
magnitude and in temporal extent, reaching 50% magnitude halfway through the vowel interval.

The patterns for the two word-initial vowel conditions are perhaps the most surprising. On 
the one hand, the degree of nasalization reaches a relatively high level at the end of the vowel 
interval in the #_N environment and a relatively low level at the end of the vowel interval 
in the #_C environment, suggesting that velum height is indeed conditioned by anticipatory 
co-articulatory effects in these environments. On the other hand, rather than the beginning of 
the vowel being oral in word-initial position (as might be expected for what is ostensibly a 
phonologically oral vowel), the degree of nasalization is already at a moderate level from the 
very start of the vowel interval in both the #_N and #_C environments, suggesting a moderate 
degree of vowel nasalization word-initially. In other words, the time-varying pattern of vowel 
nasalization for #_N is intermediate between those of C_N and N_N, while the pattern for #_C is 
intermediate between those of C_C and N_C. Since the 10% time points in these environments 
were not included in the model training, it is possible that these patterns involving the left edge 
of the vowel interval are simply the result of under-fitting of the model for these cases. We will 
explore these word-initial environments in greater detail as a post-hoc exploration in Section 4.3.

Figure 4: Predicted degree of nasalization (NAF values) over normalized time from 10% to 
90% of the vowel interval. The six different phonetic environments of interest are denoted by 
both color and line type. Means of each phonetic environment are displayed along with 95% 
confidence interval bands.
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4.1.1. Individual speaker results
In this section, we look at the individual results for the two speakers to better understand the 
degree of inter-speaker variability. Figure 5 displays the NAF results for Sydney, and Figure 6 
display the NAF results for Laurie. In comparing these individual results to the aggregate results 
in Figure 4 it is apparent that the aggregated results are more similar to the patterns produced 
by Sydney than to those produced by Laurie. This is to be expected, since the aggregated results 
are averages and Sydney contributes 3.3× more data to the aggregate than Laurie. Moreover, the 
larger degree of category overlap in Figure 6 compared to Figure 5 is likely a result of Laurie›s 
relatively small data set and, subsequently, some degree of under-fitting in this speaker’s XGBoost 
model. Nevertheless, the within-speaker patterns for Laurie are consistent with Sydney›s patterns 
with the exception of one notable difference: Whereas the degree of nasalization in the #_N 
environment begins at a moderate level and increases throughout the vowel interval for Sydney›s 
productions, Laurie exhibits a consistently high degree of nasalization throughout the entire 
vowel interval. In this manner, Laurie’s realization of vowel nasality in the #_N environment is 
identical to that of the N_N environment. However, by and large, the time-varying patterns of 
nasalization are remarkably similar between the two speakers.

Figure 5: Predicted degree of nasalization (NAF values) over normalized time from 10% to 90% 
of the vowel interval, for speaker Sydney. The six different phonetic environments of interest are 
denoted by both color and line type. Means of each phonetic environment are displayed along 
with 95% confidence interval bands.
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Figure 6: Predicted degree of nasalization (NAF values) over normalized time from 10% to 90% 
of the vowel interval, for speaker Laurie. The six different phonetic environments of interest are 
denoted by both color and line type. Means of each phonetic environment are displayed along 
with 95% confidence interval bands.
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4.2. Quantitative results
The distributions of all NAF values within the target vowels—i.e., all values combined, 
independent of the time course of the vowel interval—are displayed as both probability density 
functions and horizontal box plots in Figure 7, with the separate vowel environments denoted 
by color. The distributions for the N_N and C_C environments are as expected: A left-skewed 
distribution centered on 1 for the N_N environment, suggesting that most of the samples display 
a high degree of nasalization but with a range of samples displaying moderately less; and a right-
skewed distribution centered on 0 for the C_C environment, suggesting that most of the samples 
display a low degree of nasalization but with a range of samples displaying moderately more. 
The results for the N_C and C_N environments are also unsurprising. The NAF values span the 
entire range for both environments, due to the time-varying patterns observed above: In the N_C 
environment the NAF values start high, end low, and pass through the entire range of values in 
between, and in the C_N environment the NAF values start low, end high, and pass through the 
entire range of values in between. There is, however, a difference between the two environments 
with regard to the average of the range of NAF values: The average is slightly higher in the N_C 
compared to the C_N environment. Finally, the results for the word-initial vowel environments 
mirror the time-varying qualitative results: In word-initial position, vowels generally display 
a moderate degree of nasalization. However, there is a large range of NAF values in the word-
initial position, especially for the #_C environment.
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The results of the Tukey contrast tests for the LME model are shown in Table 3. Significant 
differences at the Bonferroni-adjusted α level are marked with asterisks. All of the pair-wise 
differences are significant according to the Tukey contrast tests, and thus the ranking of the 
average degree of nasalization in the six vowel environments is as follows: C_C < #_C < C_N < 
N_C < #_N < N_N. There are two particularly important aspects of these results that we would 
like to note. First, the quantitative results support the qualitative observations that #_C patterns 
between C_C and N_C, while #_N patterns between C_N and N_N. Second, the greater degree 
of nasalization for N_C compared to C_N supports the claim of a greater degree of carryover 
compared to anticipatory vowel nasalization in Australian languages (Butcher, 1999; Butcher and 
Loakes, 2008; Stoakes et al., 2020), although the difference between the two environments in our 
data is small—indeed, this pair-wise difference yields the second smallest estimate magnitude 
of all 15 contrast tests. This suggests that, even though carryover nasalization is greater than 
anticipatory nasalization in Arabana, anticipatory nasalization is nonetheless fairly substantial.

Figure 7: Probability densities and corresponding box plots for the predicted degree of nasaliza-
tion (NAF values) in target vowels of the six different phonetic environments of interest, denoted 
by color.
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4.3. Post-hoc analysis: Word initial vowel nasalization
The qualitative assessment in Section 4.1 suggested that word-initial vowels are moderately 
nasalized by both of the Arabana speakers, even in the ostensibly oral #_C environment, and the 
quantitative assessment in Section 4.2 confirmed these patterns. As previously noted, since the 
10% time points in these word-initial environments were not included in the model training, it 
is possible that these patterns associated with the left edge of the vowel are simply the result 
of model under-fitting. In other words, since the model was never explicitly trained on acoustic 
features at the beginning of the vowel interval in word-initial contexts, it may be the case that the 

Linear Hypotheses: Estimate Std. Error z value Pr (>|z|)

#_N – #_C == 0 0.307530 0.008772 35.057 <2e-16 ***

C_C – #_C == 0 –0.222951 0.009029 –24.693 <2e-16 ***

C_N – #_C == 0 0.064788 0.009006 7.194 9.46e-12 ***

N_C – #_C == 0 0.169078 0.008993 18.801 <2e-16 ***

N_N – #_C == 0 0.437206 0.008981 48.681 <2e-16 ***

C_C – #_N == 0 –0.530481 0.009030 –58.746 <2e-16 ***

C_N – #_N == 0 –0.242742 0.009007 –26.949 <2e-16 ***

N_C – #_N == 0 –0.138452 0.008994 –15.394 <2e-16 ***

N_N – #_N == 0 0.129676 0.008982 14.437 <2e-16 ***

C_N – C_C == 0 0.287739 0.009257 31.082 <2e-16 ***

N_C – C_C == 0 0.392029 0.009244 42.407 <2e-16 ***

N_N – C_C == 0 0.660157 0.009233 71.500 <2e-16 ***

N_C – C_N == 0 0.104290 0.009222 11.308 <2e-16 ***

N_N – C_N == 0 0.372418 0.009211 40.433 <2e-16 ***

N_N – N_C == 0 0.268127 0.009198 29.151 <2e-16 ***

Table 3: Tukey pair-wise contrast tests for the linear mixed effects model created to test for the 
effect of phonetic environment on the predicted degree of nasalization (NAF values). p-values are 
Bonferroni-adjusted, and significant differences at the adjusted α level are marked with asterisks: 
* 0.05, ** 0.01, *** 0.001.
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model predictions in these contexts are simply ambiguous (i.e., neither oral nor nasal, according 
to the model), and therefore fall in the middle of the 0–1 scale. In this section, we investigate the 
patterns of nasalization that may be inferred by two of the features, both of which are commonly 
used as single-metric acoustic correlates of vowel nasalization: (formant-compensated) A1-P0 and  
F1 bandwidth.

When the nasal cavity is acoustically coupled to the oropharyngeal cavity during the 
production of vowel nasalization, additional poles (spectral resonances) associated with 
the side-branching nasal cavity are introduced to the combined acoustic transfer function 
(Maeda, 1993; Stevens, 2000). Chen (1997) proposed two measures to capture the relationship 
between the amplitudes of oral and nasal poles, with A1-P0—i.e., the difference between the 
amplitude of the most prominent F1 harmonic and the amplitude of the harmonic estimated 
to correspond to the lowest-frequency nasal pole—being the most robust measure. Correction 
functions based on the frequencies and bandwidths of nearby formants were also proposed to 
help make the measure even more robust. Thus, (formant-corrected) A1-P0 has often been used 
as an acoustic correlate of nasalization, with a decrease indicating an increase in the degree  
of nasalization.

The increased surface area of the acoustically-coupled vocal tract and the soft tissues of the 
nasal cavity absorb acoustic energy more than occurs in the oral cavity alone (i.e., during oral 
vowel production), resulting in a global reduction in formant amplitude and widening of formant 
bandwidths (Stevens, 2000, p. 193). The widening of formant bandwidths is predicted to be 
most evident in lower frequencies, due to the relatively close proximity of oral and nasal poles. 
Thus, F1 bandwidth has often been used as an acoustic correlate of nasalization, with an increase 
indicating an increase in the degree of nasalization.

In order to directly compare the results for A1-P0 and F1 bandwidth, we use here P0-A1 
instead of A1-P0; thus, an increase in either P0-A1 or F1 bandwidth is inferred as an increase 
in the degree of nasalization. Figure 8 displays the results for formant-compensated P0-A1 
and Figure  9 displays the results for F1 bandwidth. Both of these measures suggest that the 
word-initial environment is characterized by a high degree of nasalization, even in the #_C 
environment (which is presupposed to be both phonologically and phonetically oral). In fact, 
based on these two measures alone, the degree of nasalization in these word-initial contexts is 
suggested to be even higher than when immediately adjacent to a nasal consonant, i.e., in N_N 
and N_C. Although this latter observation would be phonetically puzzling if indeed accurate, 
these results do at least support the findings from the primary NAF analysis that word initial 
contexts are nasalized in Arabana. A potential explanation for this pattern is discussed in  
Section 5.2.
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Figure 8: P0-A1 values over normalized time from 10% to 90% of the vowel interval. The six 
different phonetic environments of interest are denoted by both color and line type. Means of 
each phonetic environment are displayed along with 95% confidence interval bands.
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Figure 9: F1 bandwidth values over normalized time from 10% to 90% of the vowel interval. The 
six different phonetic environments of interest are denoted by both color and line type. Means of 
each phonetic environment are displayed along with 95% confidence interval bands.
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5. Discussion
5.1. Pre-stopping and anticipatory vowel nasalization
In addition to evidence for substantial carryover nasalization, which is typical for Australian 
languages, we have also observed evidence for substantial anticipatory nasalization in Arabana, 
even though the overall degree of nasalization in the vowel is marginally less than observed 
for carryover nasalization. As noted in Section 1.1, a pre-stopped realization and anticipatory 
nasalization are antithetical to one another: The velum cannot be both high (for a pre-stopped 
production) and low (for nasalization) at the same time, i.e., at the right edge of the vowel. In 
order to resolve this aerodynamic conflict, either nasalization is lost and a stop can arise, or 
nasalization is maintained and a stop does not arise.8 Pre-stopping is a completed sound change 
process in Arabana, and our results show evidences of both of these outcomes: Vowels preceding 
oral consonants do not exhibit anticipatory nasalization (regardless of the historical origin of the 
consonant), and vowels preceding nasal consonants do exhibit anticipatory nasalization.

How, then, can we account for the one environment where pre-stopped forms did not arise 
historically in Arabana and where nasalization at the right edge of the vowel is synchronically 
preserved, i.e., /NVN/? Our results suggest that, synchronically, anticipatory nasalization is 
present in all pre-nasal contexts: /NVN/, /CVN/, and /#VN/. Each of these thus poses a potential 
aerodynamic conflict for the realization of a pre-stopped form, since the degree of nasalization is 
high at the right edge of the vowel. If we reconstruct similar patterns for Pre-Arabana, then the 
question remains: Why would pre-stopping occur in the /CVN/ and /#VN/ contexts, but not in 
/NVN/? We propose that the answer is to be found in the suggestion made by Koch (1997): The 
vowel was fully nasalized when the sound change was taking place.

Our results indicate a high degree of nasalization by both speakers throughout the entire vowel 
duration in the /NVN/ environment. This pattern would be at odds with co-articulatory planning 
that is prevalent in one direction (carryover) but restricted in another (anticipatory), as has been 
claimed for other Australian languages (Butcher, 1999; Butcher and Loakes, 2008; Stoakes et al., 
2020). Our results suggest that anticipatory nasalization is not restricted in Arabana, however: 
Both carryover co-articulation and anticipatory co-articulation are substantial in both magnitude 
and temporal extent. When carryover and anticipatory planning are both active within a single 
vowel segment (such as in the /NVN/ environment) then consistent nasalization throughout the 
vowel is not at odds with co-articulatory planning but is, rather, expected. Thus, our findings 
of both extensive anticipatory nasalization in all pre-nasal contexts, as well as consistent 
nasalization throughout the vowel interval in specifically the /NVN/ context, are congruent with 

 8 This is, of course, a simplification of two outcomes of diachronic resolution to this aerodynamic constraint. Syn-
chronically, the competing aerodynamic requirements of stop production and nasalization manifest in more gradient 
effects on articulatory coordination, such as a reduction in the duration and magnitude of the velum gesture, e.g., as 
observed in German VNC contexts (Carignan et al., 2021).
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one another. We therefore reconstruct */NVN/ in Pre-Arabana as having the same realization as 
we have observed here, and we propose that it is precisely the consistent nasalization throughout 
the vowel interval that resisted the development of pre-stopping in this particular environment.

5.2. Initial dropping and partial gestural maintenance
Our results show evidence of maintenance of vowel nasalization in environments where deletion 
of vowel nasalization might reasonably be predicted. With the sound change */#ŋa/ > /#a/, it 
is predicted that the loss of the timing and gestural coordination targets for the initial */ŋ/ would 
be accompanied by the loss of the carryover nasalization from this consonant onto the following 
vowel, i.e., the loss of the nasal consonant would involve the complete loss of its gestural content. 
Therefore, on general grounds, the prediction is that the degree of vowel nasalization in the 
pair #CVN and #VN should pattern similarly, while the degree of vowel nasalization in the pair 
#CVC and #VC should also pattern similarly. Rather, according to the NAF metric used this 
study, #VC patterns intermediately between #CVC and #NVC for both speakers, while #VN 
patterns intermediately between #CVN and #NVN for Sydney and similarly to #NVN for Laurie.

These results suggest that the sound change */#ŋa/ > #/a/ has involved the loss of the 
oral constriction associated with /ŋ/—as indicated by the loss of its temporal slot in speech 
production—but not a complete loss of the velum gesture. The end result is thus a partial 
maintenance of the effect of co-articulation (i.e., carryover nasalization on the vowel) even 
though the original source of the co-articulation (i.e., the nasal consonant) has been lost. As 
discussed in Section 1.2, the change */#ŋa/ > /#a/ was actively spreading through the lexicon 
when the speakers reported here acquired Arabana as a first language. This may be an important 
factor in the maintenance of some velic gestural content, even though the lingual gestural content 
of /#ŋ/ has been lost. The fact that Laurie acquired Arabana 19 years earlier than Sydney and 
therefore earlier in the active spread of the initial dropping change may also be relevant to the 
fact that Laurie’s #VN realizations are similar to his #NVN realizations whereas Sydney’s #VN 
realizations are intermediate between his #CVN and #NVN realizations.

We would like to note that these patterns occur in an environment where a prosodic boundary 
might have some affect on the degree of nasalization. Given that the prosodic context of the target 
words was not controlled for in the current study, these results for the word-initial environment 
should be approached with an appropriate degree of circumspection. This being said, domain-
initial effects have generally been shown to result in the reduction of vowel nasality, not in its 
enhancement (Jang et al., 2018; Cho et al., 2017).

5.3. Theoretical implications of the study
The results from this study support the notion that individual speech sounds are composed of an 
ensemble, or constellation of autonomous gestures—as posited by, e.g., Articulatory Phonology 
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(Browman and Goldstein, 1986; Saltzman and Munhall, 1989). The findings for initial dropping of 
*/#ŋa/ > /#a/ suggest that the separate lingual and velar gestures involved in the production of 
[ŋ] were decoupled at some diachronic stage, leaving only the velar gesture as a synchronic vestige 
of the nasal consonant when the lingual gesture was lost. Once decoupled, the temporal interval 
of the velar gesture would no longer be time-locked to the timing slot of /ŋ/ in */#ŋa/. Rather, 
the independent velar gesture, which was once part of the gestural constellation of /ŋ/, would 
then be “free” to shift to the temporal interval of the vowel, i.e., vowel nasalization. Decoupling 
of gestural sub-components of speech segments has been argued to play a key role in mechanisms 
of sound change, since such decoupling might permit independent temporal realignment (Beddor, 
2009) and/or kinematic alteration (Carignan et al., 2021) of one of the decoupled gestures.

This has further implications for possible mechanisms of sound change. The development of 
contrastive nasal vowels arising from loss of a following nasal consonant is typologically common, 
e.g., Latin vinum [winum] ‘wine’ > Old French vin [vĩn] > Modern French vin [vɛ̃]. In these 
cases, the preceding vowel can be reinterpreted as nasal when the oral constriction of a nasal coda 
is reduced or lost. Our results suggest that any mechanism that is responsible for the emergence 
of contrastive vowel nasality from regressive coarticulation and subsequent loss of consonant 
nasality, might also function in the same manner for the emergence of contrastive vowel nasality 
from perseverative coarticulation and subsequent loss of consonant nasality. Of course, the 
development of vowel nasalization in these environments is not inevitable; rather, vowel nasality 
has been shown to be diachronically malleable (Sampson, 1999), even over relatively short 
timescales (Zellou and Tamminga, 2014). The between-speaker differences that we observe for 
the word-initial environments might provide a reason for such malleability. The differing patterns 
for Laurie’s and Sydney’s word-initial productions suggest that there may be some independence 
associated with the temporal and magnitudinal characteristics of the decoupled velar gesture: 
Although both speakers exhibit extensive temporal nasalization in word-initial environments, there 
is a marked difference between the two speakers with regard to the magnitude of nasalization. 
While Laurie exhibits high magnitude of nasalization word-initially, Sydney—who is only 19 
years Laurie’s junior—exhibits much less so. Thus, a diachronic weakening of the magnitude of 
the velar gesture, even while the temporal extent of the velar gesture is maintained, may be one 
possible reason why contrastive vowel nasality has not developed in Arabana, despite partial 
maintenance of vowel nasalization in the sound change */#ŋa/ > /#a/.

5.4. Limitations of the study
One limitation of the current study is the assumption we make about our acoustic metric of 
nasality, the NAF prediction values. Single acoustic metrics of nasality such as A1-P0 or F1 
bandwidth assume that the relationship between the metric and the degree of nasalization holds 
true for all situations: All languages, all speakers, all phonetic contexts, all recordings, etc. If this 
relationship fails for any number of reasons, then the reliability of these metrics in accurately 



25Carignan et al: An investigation of the dynamics of vowel nasalization in Arabana using machine learning of acoustic features

capturing the degree of nasalization diminishes. Moreover, if some other, independent phonetic 
phenomenon affects these metrics in a systematic manner, then the resulting measurement may 
be artificially inflated due to the confound. For example, breathy voicing, like vowel nasality, 
is characterized by lower A1-P0 values and higher F1 bandwidth values (Chen, 1997; Simpson, 
2012; Styler, 2015). The acoustic similarity between vowel nasality and breathy voicing may 
indeed be the cause for their perceptual similarity (Imatomi, 2005; Ohala and Amador, 1981) 
and also their co-occurrence in synchronic (Carignan, 2017; Garellek et al., 2016) and diachronic 
(Ohala, 1975) patterns. Ultimately, this means that phonetic effects that are independent of 
nasality (such as breathy voicing) can influence single-metric approaches in ways that can lead 
to incorrect interpretations about the degree of nasalization present in the acoustic signal.

Here, we make a different set of assumptions about the metric of nasality used in the study. 
We do not make the assumption that the relationship between a single given acoustic feature and 
the degree of nasalization holds for all situations; indeed, a key assertion of the NAF approach is 
that there is no single metric for which this is true, and so a better approach is to statistically learn 
the relationship between a conglomerate of different features and the degree of nasalization for 
each use case, e.g., each individual speaker. However, the assumptions we make instead regard the 
physiological state of the velum: We assume that time points immediately adjacent to oral consonants 
will coincide with a raised velum and time points immediately adjacent to nasal consonants will 
coincide with a lowered velum. When assigning the numeric value “0” to ostensibly oral contexts 
and “1” to ostensibly nasal contexts, we are drawing an interpretation that numeric values on this 
0–1 scale correspond to lesser or greater degrees of nasality. It is important to remember what these 
values actually represent, however: Numeric predictions that observations are more or less similar 
to values that characterize the training data. Thus, we assume that NAF values near 0 correspond 
to “oral” when, more accurately, they correspond to “observations with acoustic features that are 
characteristic of a vowel adjacent to an oral consonant.” Likewise, we assume that NAF values near 
1 correspond to “nasal” when, more accurately, they correspond to “observations with acoustic 
features that are characteristic of a vowel adjacent to a nasal consonant.”

Another limitation of the study is the small number of speakers. Exploratory research with 
only two speakers is merely a case study, and it is difficult to generalize from such a case study 
to the language as a whole. However, when working with critically endangered languages such 
as Arabana, it is often impossible to obtain data from more speakers or even to obtain more data 
from the same speakers, e.g., when one of the speakers has died since the original data were 
collected. It is in extreme cases like these when methodologies such as machine learning and 
data re-sampling allow researchers to make full use of the limited data available to them. We are 
heartened that, when using such methodologies, similar patterns emerge for both of the Arabana 
speakers included in this study. These similarities lend support to generalizing from our limited 
data to the Arabana language more broadly.
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A final limitation of the study is the lack of physiological data (e.g., nasal airflow, nasometry, 
or physical estimates of velum height) to serve as ground truth for comparison with the NAF 
predictions, especially as a basis for validating the temporal patterns that we observe. All things 
being equal, more direct estimates of nasality (such as aerodynamic measures) are preferable to 
less direct estimates of nasality (such as acoustic measures). However, all things were not equal 
in the current study, namely: (1) physiological equipment were not available for use when the 
data collection originally took place, and (2) some of the data were collected from a speaker who 
has since passed away. However, in the original proof of concept of the NAF method (Carignan, 
2021), nasometric measures were used as ground truth to compare with NAF predictions. The 
results indicated not only that the NAF method provides an accurate estimate of the magnitude of 
nasalization (an average correlation coefficient of 0.92 [SD = 0.05] with the ground truth), but also 
that the NAF method provides an accurate estimate of the timing of nasalization (a 95% Bayesian 
credible interval that contained the ground truth). Those findings support the use of the NAF method 
as a way of estimating both relative magnitude and timing of vowel nasalization in cases where 
physiological measurements are not practical or even possible, e.g., in the current study.

6. Conclusion
This paper has presented temporally dynamic patterns of acoustically derived measures of vowel 
nasalization from two speakers of Arabana, using a variation of the Nasalization from Acoustic 
Features method (Carignan, 2021), in which we have used gradient tree boosting algorithms to 
statistically learn the mapping between acoustics and vowel nasality in a speaker-specific manner. 
By interpreting the predictions from these models as a metric of nasality, we have observed the 
following ranking of the average degree of nasalization in the six vowel environments that we 
investigated here: C_C < #_C < C_N < N_C < #_N < N_N. Three primary findings have emerged 
from this exploratory research. First, NVN contexts display nasalization throughout the entirety 
of the vowel interval; we reconstruct a similar realization for Pre-Arabana and propose that it was 
consistent nasalization throughout the vowel which acted to resist the diachronic development of 
pre-stopping in this particular context. Second, although the average degree of anticipatory vowel 
nasalization is less than the average degree of carryover vowel nasalization, the overall difference 
between the two types of co-articulatory nasalization is relatively small, and the temporal extent is 
considerable for both, which is contrary to previous claims. Third, the degree of vowel nasalization 
in word-initial contexts is relatively high, even in the #_C environment (which is presupposed to 
be both phonologically and phonetically oral), suggesting that the sound change *#ŋa > #a has 
involved the loss of the oral constriction associated with ŋ but not a complete loss of the velum 
gesture, resulting in partial maintenance of nasal co-articulation on the vowel despite the loss of 
the original source of the co-articulation, the nasal consonant itself.
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