Appendix B: Model construction and selection

Before the initial model (Section 6) was assessed, we first evaluated whether collinearity of
all the fixed effects would be an issue. Using the function collin.fnc() in the languageR
library (Baayen, 2013), the condition number (Belsley, Kuh, & Welsch, 2005) was calculated
for all the fixed effects, and a value of 4.567 was obtained. Given that the condition number
is between 0 and 6, there is very little collinearity between our fixed effects (Baayen, 2008,
pp. 198-200). Therefore, we can be confident that each of the fixed effects is a relatively
independent component in the regression model.

In constructing our initial model, we did not follow Barr, Levy, Scheepers, and Tily’s
(2013) recommendation to fit the most complex, convergent random effect structure for our
model. This practice has been critiqued elsewhere because it can lead to uninterpretable
models (Baayen, Vasishth, Kliegl, & Bates, 2017) with reduced statistical power (Matuschek,
Kliegl, Vasishth, Baayen, & Bates, 2017). Instead, the random effect structure of the initial
superset model was determined by the authors on the basis of the empirical and theoretical
considerations discussed in Section 6. The superset model contains all fixed effects, without
interaction terms between them, as well as the random intercepts and slopes mentioned
above.

@)) Superset model syntax in LME4

Accuracy ~ Stimulus Similarity + Category Similarity (Mean) + Category Simi-
larity (SD) + Segmental Frequency + Functional Load + Distributional Overlap
+ Wordhood + Word Frequency + Neighborhood Density + Average Neigh-
borhood Frequency + Bigram frequency + Response Time + (1 | Unordered
Stimulus Pair) + (1 | List) + (1 | Stimulus Order) + (1 |Onset-Coda) + (1 +
Segmental Frequency + Functional Load + Segment Environment Distribution
+ Wordhood + Word Frequency + Neighborhood Density + Average Neigh-
borhood Frequency + Bigram frequency | Participant)

This initial model was then simplified following a step-down, data-driven model selec-
tion procedure which compared nested models using the backward best-path algorithm (e.g.,
Barr et al., 2013; Gorman & Johnson, 2013). We began by simplifying the random effects
structure of the model. First, we generated a set of models which were minimally simpler
than the superset model, differing only in the ommission of one of the random effects. Each
of these models was then compared to the superset model using a likelihood ratio test, com-
puted with the anova() function. If the likelihood ratio test resulted in a p-value of 0.1 or
higher, the simpler model was taken to be an improvement on the superset model.

We chose a relatively liberal threshold of a = 0.1 to be conservative in our model se-
lection procedure, preferring to include potentially relevant predictors in the final model
if they were reasonably well-justified. In the case that there were multiple subset models
which exceeded this a threshold in comparison with the superset model, the subset model
with the strongest evidence (the highest p-value) was selected. The random intercepts for
both Participant and item (Unordered Stimulus Pair) were never considered for exclusion,
as it is standard practice to include these random effects in models of this type (e.g., Jaeger,
2008). This procedure was then repeated, with successive simplification of the random ef-
fects structure, until no subset model exceeded the a threshold of 0.1 in comparison with
the immediate superset model.

After the best random effect structure was determined, the same steps were repeated to
determine the best fixed effects structure. This procedure alternated between random and
fixed effect structures until the model could not be reduced any further. The resultant, ‘best’
model is given in (2).



2 Best model

Accuracy ~ Stimulus Similarity + Category Similarity (Mean) + Functional Load
+ Distributional Overlap + Word Frequency + (1 | Unordered Stimulus Pair) +
(1 | Participant)

The overall fit of the model, R%LMM, was calculated using the r.squaredGLMM() function
in the MuMIn library (Barton, 2014; Johnson, 2014; Nakagawa & Schielzeth, 2013). The
marginal R%;,,, is 23.2% and conditional R%;,,,, is 49.9%. Marginal R%,,,, represents the
variance explained by fixed factors and conditional RZ,,,, represents the variance explained
by both fixed and random factors. A sizeable portion of the variance (23.2%) was explained
with only five fixed factors, suggesting that our relatively simple model is unlikely to be
over-fitting the data.
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